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1 Introduction

Regulators often must make decisions about how high to set the evidentiary threshold for

allowing the proliferation of innovations of uncertain value. These regulators must trade off the

potential gains from the rapid adoption of a valuable innovation against the risk of allowing a

wasteful or even harmful innovation to become more widely employed. The question of how

much evidence policymakers should require before facilitating the adoption of an innovation is

complicated by the potential for social learning—increased adoption of the innovation can itself

reduce uncertainty about its value as it becomes more familiar to a wider audience. In this paper,

I address these issues in the context of Medicare coverage for new medical procedures.

New medical procedures are an excellent context in which to study these issues. First, new

medical procedures represent a large class of innovations for which the value is extremely uncer-

tain. Over 700 new medical services have been introduced since 2002, but only around 60% of

these procedures have been successfully adopted into medical practice. The successful innova-

tions can be a source of such valuable advances as improved health, cost savings, and increased

productivity, while the unsuccessful ones can lead to increased costs, uncertain health gains,

and waste (Cutler and McClellan, 2001; Cutler and Huckman, 2003; Chernew and Newhouse,

2011; Baicker et al., 2012; Skinner and Staiger, 2015; Hwang et al., 2016). The combination of

high potential payoffs from successful innovations and considerable uncertainty around which

procedures will prove to be valuable makes the tradeoff between allowing early adoption and

preventing the spread of low-value innovations highly salient to policymakers.

The regulatory system for new medical services highlights this tradeoff while also presenting

a unique opportunity for identification of learning spillovers across health care providers. The

determinations of whether Medicare will reimburse providers for each of these services are made

by the privately-owned companies that contract with the government to administer Medicare.

Importantly, each of these administrators, called Medicare Administrative Contractors or MACs,

has a distinct geographic jurisdiction in which they make coverage determinations. These ad-

ministrators frequently issue conflicting coverage rules, resulting in significant variation in where

and when new procedures will be reimbursed by Medicare as coverage is rolled out in a staggered

fashion for each new procedure. This variation results in providers in some jurisdictions being

incentivized to adopt the innovation early when evidence surrounding its efficacy is scarce while

others must wait and learn from the experience of providers elsewhere until the procedure is

covered in their jurisdiction.

I use this exogenous variation in the incentives to adopt new procedures in different infor-

mation environments to identify the extent to which the adoption of new procedures is driven

by social learning and determine the optimal evidentiary threshold on the part of Medicare

administrators in light of this phenomenon. To do this, I first assess the ability of Medicare
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administrators to influence the adoption of new procedures by health care providers. Leveraging

the variation in timing of coverage across jurisdictions, I find that granting local coverage to a

new procedure leads to a 6-fold increase in utilization. This novel evidence of the ability of local

administrators to impact the adoption of new innovations indicates that the question of how

these administrators should set their evidentiary thresholds is of great importance to welfare.

Furthermore since administrators have such an ability to influence utilization, if there are large

spillovers of knowledge between providers, then these coverage rules must grapple with the in-

formation externality their decisions entail: providers in other jurisdictions benefit by learning

from the experience of providers elsewhere.

I provide evidence that this learning externality is large. First, I show that utilization re-

sponds to changes in coverage in other jurisdictions. Importantly, these spillovers are positive for

procedures that turn out to be high value, while they are negative for innovations that eventually

are found to be of low value. This result is consistent with providers receiving information about

the efficacy of new procedures from the increased utilization in areas with different coverage rules

and updating their beliefs accordingly. Similarly, I show that idiosyncratic shocks to the initial

level of utilization of a procedure are persistent for successful innovations but not for unsuccessful

ones. This is true conditioning on a proxy for the initial beliefs about the efficacy of the new

procedure, as well as instrumenting for past utilization using the relative size of the jurisdictions

in which the procedure was previously covered. Once again, this indicates that the more quickly

the medical community gains experience with a procedure, the more quickly it adopts high value

innovations and de-adopts low value ones. Finally, I present suggestive evidence that when a

procedure becomes covered in larger jurisdictions, the resulting increase in the rate of adoption

for successful procedures is larger than for smaller jurisdictions as larger jurisdictions generate

more signals of the innovation’s true quality. Conversely, utilization of unsuccessful procedures

falls more quickly in larger jurisdictions for the same reason. I also present evidence that other

potential drivers of diffusion patterns including learning from clinical trials and technological

change are unable to explain the patterns of adoption I observe in this context.

In light of the evidence that social learning is an important factor in the diffusion of new

medical procedures, I address the question of how Medicare should set its evidentiary threshold

for coverage by estimating a structural model of physician learning in response to Medicare

coverage decisions. This model allows me to quantify the tradeoffs faced by policymakers and

inform welfare-enhancing policy changes to Medicare coverage policies. I model physicians as

Bayesian learners generating a noisy public signal of the procedure’s quality each time they

perform it. Identification here is very difficult in most contexts: whether a potential adopter

incorporates an innovation early or late is endogenous to the agent’s beliefs about the value

of the innovation, meaning that late adopters may behave differently than early adopters for

reasons other than the development of evidence by the early adopters. In my context though, I
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can leverage exogenous variation in the incentives faced by providers stemming from differences

in local Medicare coverage decisions to identify the model. In particular, I am able to use this

variation to identify physicians that adopt the new procedure early (when uncertainty about

its value is rampant) or late (when the uncertainty is lower) for reasons beyond the physician’s

perceived value of the innovation. This novel use of an understudied institutional detail allows

me to quantify the value of learning spillovers from early- to late-adopting physicians. Using

this structural model, I am able to simulate counterfactual adoption patterns under more or

less stringent coverage rules, finding that transitioning to a regime of universal coverage of these

new procedures would result in large welfare gains relative to the current regime, achieving 93%

of the welfare gains that covering all and only procedures that are better than the respective

incumbent procedure would achieve, indicating that allowing for additional experimentation and

learning would be extremely valuable to patients.

The tradeoff faced by Medicare administrators between allowing for early experimentation

and learning or waiting until the evidence is more certain is something regulators must grapple

with across many different arenas. There is substantial policy debate over whether the standards

chosen by policymakers are appropriate in areas as disparate as Food and Drug Administration

approval of pharmaceuticals (Jewett, 2022; Makary, 2021) to investments in green technology

(Storrow, 2021). In line with the importance of this tradeoff, there have been a number of

academic studies highlighting that this tradeoff exists and asking whether the regulatory regime

is optimal. The most prominent examples of these studies are in the medical context, including

studies pointing out that shortened drug review times lead to more adverse events (Grabowski

and Wang, 2008; Olson, 2008) and studies of the medical device industry arguing that the

regulatory incentives manufacturers face lead to underinvestment in clinical trials and restrict

new device entry (Budish et al., 2016; Stern, 2017). Perhaps most closely related to my study,

Grennan and Town (2020) compare the review processes for new medical devices in the United

States and European Union and find that the higher US standard is indistinguishable from one

that maximizes total surplus. In the context of new medical procedures, by contrast, I find that

welfare could be increased by dramatically lowering the regulatory standard.

The potential for social learning complicates the tradeoff between allowing rapid diffusion

of high-potential innovations at the risk of allowing more low-value ones to proliferate. Social

learning is the process of agents updating beliefs about the efficacy of an innovation through

the receipt of public signals generated by the innovation’s use. It is important to note that this

type of learning refers to acquiring more accurate beliefs, rather than learning how to deploy

resources more efficiently and achieve better outcomes. While both types of learning are often

present in medical contexts, the social learning that I study is distinct from this more com-
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monly studied phenomenon of learning-by-doing.1 Nonetheless, social learning has long been

thought to be important for physicians (American Medical Association, 2010). National con-

ferences, medical society meetings, and communications allow for the rapid, wide diffusion of

new information about physician experiences through word-of-mouth, and continuing education

requirements lead health care providers to be exposed to new developments in their profession

(McKinlay, 1981). Indeed, empirical research has corroborated that health care providers learn

from the experiences of those they come in contact with (Allen et al., 2019; Soumerai et al.,

1998). This literature focuses on documenting evidence of social learning at the local level:

knowledge spreading between physicians that are geographically clustered (Agha and Molitor,

2018) or socially connected (Zheng et al., 2010). In contrast, my paper focuses on the global

knowledge spillovers from each physician to the entire medical community. To my knowledge,

no research has empirically documented these global spillovers despite their likely importance.

The global social learning I study is thought to be an important driver of the diffusion of

innovations even beyond medicine, with phenomena as diverse and important as the Industrial

Revolution (Mokyr, 2016), the use of US states as laboratories of democracy (Brandeis, 1932;

Callander and Harstad, 2015), and the proliferation of pro-market economic policies (Buera

et al., 2011) having been attributed to social learning. However, given the universal nature of

the learning spillovers in many contexts, identification of social learning has proven difficult.

Due to the endogeneity of innovation adoption decisions, to credibly identify global learning

spillovers from one agent to all others, the research design needs exogenous variation in the

timing of adoption. In light of this difficulty, the vast majority of empirical research on social

learning has focused on documenting particular channels through which knowledge can spread,

including social networks (Allen et al., 2019; Foster and Rosenzweig, 1995; Ryan and Gross,

1943), geography (Chandra and Staiger, 2007; Conley and Udry, 2010; Agha and Molitor, 2018),

and professional connections (Kellogg, 2011). Existing empirical studies of social learning that

consider its global nature generally lack exogenous variation in the information environment

and incentives of agents to adopt the innovation (e.g Fafchamps et al., 2016; Moretti, 2011;

Covert, 2015). One notable exception is Gilchrist and Sands (2016), who find that variation in

weather on the opening weekend of films leads to persistent differences in viewership over the

entire theater run, arguing that this phenomenon is driven by a desire for shared experiences

rather than learning about the quality of the movie (as had been posited by Moretti (2011)).

1There are a number of excellent studies about physicians updating their beliefs about the efficacy of new
treatments, including Coscelli and Shum (2004), Crawford and Shum (2003), and Ferreyra and Kosenok (2011),
which study the adoption of a new anti-ulcer drug by Italian physicians and consider how providers learn about the
drug’s efficacy for different types of patients. In contrast, there is a distinct literature studying learning-by-doing.
For example, Gowrisankaran et al. (2006) and Hockenberry and Helmchen (2014) find evidence of learning-by-
doing for surgical procedures, while Gong (2017) considers both types of learning and finds them present in brain
aneurysm treatment. Outside of medical contexts, there is a very large literature studying learning-by-doing,
which in similar spirit to this paper has been shown to involve spillovers across agents (Thornton and Thompson,
2001; Stoyanov and Zubanov, 2012; Yang, 2022).
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Similarly, I will be able to exploit exogenous variation in the initial information available about

each innovation, albeit in a context in which policymakers play a much more active role.

Finally, my finding that the actions of Medicare administrators are powerful drivers of the

adoption of new medical procedures relates to a fast-growing literature on the importance of

administrative actions by health insurers to the provision of medical services. While recent

research has highlighted the potential for administratively determined prices (Clemens and Got-

tlieb, 2014), denials rates (Dunn et al., 2021; League, 2023), prior authorization policies (Brot-

Goldberg et al., 2022; Eliason et al., 2021), and audits (Shi, 2022) to influence medical practice,

none have studied the particularly stark administrative decision about coverage or non-coverage.

Furthermore, few studies of Traditional Medicare have recognized the decentralized administra-

tive structure of Medicare as contributing to variation in these administrative rules (League,

2023). A small number of studies have noted the high level of variation in posted rules about

coverage across contractors (Foote and Town, 2007; Levinson, 2014) while others have highlighted

discrete cases where differences in these rules may lead to differences in medical practice (Wilk

et al., 2018; Carlson et al., 2009; Foote et al., 2008). Nonetheless, none of these studies focus on

new procedures—a context in which coverage rules are both particularly stark and particularly

variable—nor provide systemic evidence of the impact of these differences across a broad class

of medical services.

The remainder of this paper is laid out as follows. In Section 2, I discuss the relevant

institutional details for the context of my study. In Section 3, I present the data used for

this project as well as summary statistics on the coverage decisions of Medicare contractors

and the success of new medical innovations. In Section 4, I exploit the differential timing of

coverage across jurisdictions to show the sizable impact of coverage decisions on the adoption

of new procedures. In Section 5, I present evidence of social learning and discuss alternative

explanations for the patterns observed in my data. In Section 6, I estimate a structural model

of physician adoption of new procedures, discussing policy-relevant and economically interesting

counterfactuals. Finally, in Section 7, I conclude and discuss directions for future research.

2 Institutional Context

2.1 Medicare Administrative Contractors and Coverage Rules

Traditional Medicare is often thought of as a monolithic, federally run insurance program

(NBPAS, 2021). But while the government bears all actuarial risk and determines the vast

majority of Medicare policy, the day-to-day administrative operations are performed by private

contractors called Medicare Administrative Contractors, or MACs. The administrative tasks

performed by these contractors include processing medical claims and prior authorization re-
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quests, enrolling health care providers in the Medicare program, and determining the conditions

under which Medicare will reimburse providers for various health care services.

These administrators are contracted to provide administrative services for distinct regional

jurisdictions. Figure 1 shows the areas administered by each administrative company in January

2002 and December 2017. At the beginning of my sample, there were 19 active administrative

companies operating jurisdictions that sometimes spanned state borders (e.g., the Washington,

DC area) or were strict subsets of states (e.g. New York). Over time, Medicare has combined

administrative jurisdictions, leading many companies to exit the market and reducing the geo-

graphic variation in coverage rules. Over my entire sample, 19 administrative companies were

active across 57 jurisdictions. A more detailed description of the jurisdiction combination process

and its effects on the health care system is available in League (2023).

Figure 1: Map of MAC Jurisdictions

(a) 2002

BCBSMT BCBSRI CGS
Cahaba FCSO Group Health
HealthNow NGS NHIC
Nationwide Noridian Novitas
Palmetto Pinnacle Regence
TrailBlazer WPS Wheatlands

January 2002 Contractor

(b) 2017

CGS Cahaba FCSO
NGS Noridian Novitas
Palmetto WPS

December 2017 Contractor

Notes: Each panel reports the administrative company responsible for processing Medicare
Part B claims in each jurisdiction of the continental United States in the relevant month.
Panel (a) reports this data for January 2002 while panel (b) reports data for December
2017.

While there are statutory guidelines as to the type of medical services Medicare is intended to

6



pay for, these administrators have wide discretion over how to implement these broad standards.

The coverage standard the administrative contractors must implement is to avoid payment for

services that “are not reasonable and necessary for the diagnosis or treatment of illness or injury

or to improve the functioning of a malformed body member” (Social Security Act, 1965a). While

there are a few examples of the federal government providing more specific guidance on whether

certain services meet this standard, in general, these determinations are left to the local con-

tractors.2 In particular, MACs tend to disagree quite frequently on coverage of new procedures.

There is anecdotal evidence that this variation can be attributed to the fact that the employees

who develop the coverage rules vary widely in their propensity to allow coverage of new pro-

cedures.3 In fact, one reason for the recent consolidation of administrative jurisdictions was a

desire on the part of policymakers to mitigate the impact of the apparently arbitrary differences

in coverage across jurisdictions (Levinson, 2014).

Because MACs decide Medicare coverage rules for the jurisdictions in which they administer

Medicare, this results in geographic variation in coverage at any given point in time. For example,

an inspector general report found that in 2011 almost two-thirds of procedures were subject to

local coverage restrictions in at least one jurisdiction, but among these, only 59% were subject

to restrictions in all jurisdictions (Levinson, 2014). Not only are there differences in coverage at

a single point in time, but these differences also change over time. Administrators continually

update their coverage rules in light of new evidence on the efficacy of treatments, leading to

significant variation in coverage rules over time.

2.2 New Medical Procedures

New medical procedures go through a much lighter touch of regulatory process than other

medical innovations, such as pharmaceuticals or devices. After the procedure is created, if the

procedure is truly different from established practice, the American Medical Association assigns

the procedure a category III Current Procedural Terminology, or CPT, code. CPT codes are

used by health care providers to inform health insurers what services they’ve rendered to patients

in order to be reimbursed. Category III codes in particular are temporary and are meant to track

2The federal government can specify coverage rules legislatively or administratively. Legislative rules must go
through the normal legislative process and so are uncommon. A rare example of this is regulation on the allowed
frequency of various screenings, including mammography and colonoscopy (Social Security Act, 1965b). More
common are administratively created rules. Analogous to the Local Coverage Determinations (LCDs) issued
by the local contractors are the National Coverage Determinations (NCDs) issued by the Centers for Medicare
and Medicaid Services. NCDs supersede LCDs and are made when “the service is the subject of substantial
controversy” surrounding the item or service (Centers for Medicare and Medicaid Services, 2003). One prominent
recent example of this is the NCD limiting coverage of the controversial Alzheimer’s drug Aduhelm (Centers for
Medicare and Medicaid Services, 2022).

3One MAC administrator attributed much of the variation to differences in the scrutiny that administrators
apply to the evidence for or against coverage. Another explained the variation as coming from the fact that
“every administrator is different.”
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the adoption of new procedures. Since the introduction of category III codes in 2002, there have

been codes generated over 700 new procedures.

After a new procedure is assigned a category III code, Medicare Administrative Contractors

determine whether Medicare will reimburse providers in their jurisdiction for performing the

procedure. Because category III codes represent new procedures, MACs have significant leeway

over coverage rules for these procedures. In fact, all MACs currently have a presumptive non-

coverage rule for all category III codes, with coverage only extended on a procedure-by-procedure

basis.

After a period that generally lasts five years, the American Medical Association reassigns the

procedure to either a permanent category I code or deletes the code.4 Procedures reported using

category I codes are the vast majority of codes, they’re much more likely to be paid by insurers,

and in this context can be thought of as marking the innovation’s success (Dranove et al., 2021).

This regulatory process has received little attention from academics. One notable exception is

Dranove et al. (2021), who find that utilization of these procedures rises when the procedures are

promoted from category III to category I codes and argue that administrative barriers and a lack

of property rights in this context depress innovation and slow the diffusion of new procedures. The

authors abstract from the main regulatory player studied in this paper: Medicare Administrative

Contractors.

This regulatory path from innovation to acceptance highlights the high level of uncertainty

about the quality of the new procedures. Even after being assigned a category III code, new

procedures are subject to disagreements among Medicare administrators about whether they

meet Medicare’s coverage standards after which they are often deleted from the CPT system by

the American Medical Association. Indeed, Dranove et al. (2021) find that for the period they

analyze, only 29% of procedures are promoted to category I status on time. Similarly, many of

these procedures fail to ever become widely accepted while others fall out of favor after initial

excitement. For example, He et al. (2019), Steinbuch et al. (2017), and Gazzeri et al. (2015)

each highlight innovations represented by category III codes that have been found to be of very

limited utility.

3 Data

The primary source of data for this paper is a 20% random sample of Medicare claims for

physician services (called the carrier file) from 2002-2017. This dataset includes encounter-level

information on patient diagnoses, procedures performed, payments made by the patient and

insurer, and many attributes of the provider and patient for millions of patients enrolled in

4Category III codes are meant to be archived after five years, but many codes are archived much later while
others are archived earlier.
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Table 1: Summary Statistics

Mean Std. Dev.

Uses Per Million Beneficiaries 366.93 1,489.02

Unique Patients Treated 1,447.19 6,833.64

Unique Providers Using 245.23 883.08

Payment per Procedure $496.04 $1,752.26

Percentage of Claims Denied 76.79% 30.02%

Months Active in Data 62.61 39.90

Adopted? 0.606 0.489

AMA Promotion Status
Promoted 0.429 0.496
Outstanding 0.294 0.456
Deleted 0.277 0.448

Distinct Procedures in Data 343

Notes: Sample consists of all professional claims reporting Cat-
egory III CPT codes for a 20% sample of Traditional Medicare
beneficiaries from 2002-2017. An observation is a procedure.

Traditional Medicare.

In Table 1, I present procedure-level summary statistics on the utilization of these procedures.

We see that there is wide variation in the overall level of utilization, as well as the in the average

reimbursement for the procedure and the share of claims denied.

In addition to utilization information, this data includes whether the administrator paid or

denied the claim for reimbursement. I use the administrator’s propensity to deny claims for each

new procedure in combination with incomplete posted coverage rules to infer the coverage status

of each procedure for each administrator in each month. Appendix A gives more details on this

classification process.

As it turns out, the administrators disagree about whether these procedures meet this stan-

dard quite regularly. This results in a great deal of variation in when procedures are covered by

Medicare across different jurisdictions. Table 2 reports the share of procedure-months in which

each administrative contractor covers the procedure fully or on a case-by-case basis. There is

very wide variation across administrators in the propensity to cover new procedures, with the

most generous administrator covering almost a quarter of the time while the least generous never

9



Table 2: Coverage by Administrative Contractor

Percentage of Procedure-Months

Administrator Non-Covered Case-by-Case Covered

Novitas 76.5% 13.3% 10.2%
Cahaba 80.7% 14.4% 4.9%
NHIC 82.0% 13.5% 4.5%
Noridian 82.2% 6.4% 11.5%
Palmetto 82.3% 7.2% 10.5%
TrailBlazer 83.7% 11.4% 4.9%
HealthNow 86.3% 5.6% 8.1%
NGS 86.8% 7.7% 5.5%
FCSO 87.0% 8.6% 4.4%
WPS 87.1% 8.0% 4.9%
Pinnacle 87.3% 8.4% 4.3%
CGS 88.0% 6.9% 5.1%
Wheatlands 93.8% 3.2% 3.0%
Regence 98.0% 1.5% 0.5%
Group Health 98.4% 0.7% 0.9%
Triple-S 98.5% 0.8% 0.7%
BCBSMT 98.9% 0.7% 0.4%
Nationwide 99.0% 0.0% 1.0%
BCBSRI 100.0% 0.0% 0.0%

Overall 79.0% 14.8% 6.2%

Notes: Sample consists of all professional claims reporting Category
III CPT codes for a 20% sample of Traditional Medicare beneficiaries
from 2002-2017. An observation is a MAC-procedure-month tuple.
The table reports the share of procedure-months at each coverage
level separately for each MAC as well as collectively. Administrators
are sorted in ascending order by non-coverage rate.

covers any procedure.5 This variation results in 57% of procedure-months featuring some differ-

ence in coverage level across jurisdictions, while among procedures covered in any jurisdiction,

it is covered in all jurisdictions only 7% of the time.

This prevalence of disagreement is important for a few reasons. First, it indicates meaningful

uncertainty on the part of the administrators as to which procedures meet Medicare’s standards

for coverage. Second, it gives me the opportunity to identify learning spillovers from physicians

in jurisdictions where the procedure is covered earlier to those that have to wait and learn until

their local administrator grants coverage to the procedure.

5Many of the administrators listed in the table were not active for the entire sample period and so made
coverage decisions on different new procedures. The model I present in Section 5 takes this issue into account,
and in estimating this model I continue to find very large differences in evidentiary standards across MACs. See
Figure 9 for this result.
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In line with this uncertainty, we see that roughly half of these procedures fail to be adopted

by the medical community. I classify procedures as adopted or de-adopted based on whether

their use grows or falls over time.6 Of the 343 procedures in my data, 208 see their use grow

over time while the remaining 135 see their use fall, as is reported in Table 1. Figure 2 shows

the average utilization of each of these classes of procedures over their time in my data. That

40% of the procedures fail is evidence that there is meaningful uncertainty about the value of

these procedures. Furthermore, the fact that on average the procedures that are adopted and

those that are de-adopted start out at roughly the same level of utilization is evidence that the

ex-ante beliefs about the efficacy of these procedures are similar. In light of this, I will use this

measure of adoption to indicate the ex-post value of each innovation.

Figure 2: Utilization by Adoption Status
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Notes: The figure reports the average utilization per million beneficiaries of procedures
whose use rises (adopted procedures) or falls (de-adopted procedures) over time. The
horizontal axis scales the length of time the code covering each procedure is in the data to
be equal to one.

Additionally, I supplement this data with hand-collected information on whether the Ameri-

can Medical Association has promoted or deleted the code covering each procedure. This com-

6Specifically, I estimate the model Yt = β0 + β1Tt + εt separately for each procedure, where Yt is the total
nationwide uses of the procedure and Tt is the number of months since the introduction of the code covering the
procedure. I classify each procedure as adopted if the estimate for β1 is greater than zero and as de-adopted
otherwise.
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plementary measure of a procedure’s ex-post value yields a similar classification of successful and

unsuccessful innovations, with these shares reported in the final rows of Table 1. For codes about

which the AMA has made a decision by January 2022, 95 have been deleted while 147 have been

promoted. This success rate of 60.7% is nearly identical to the 60.6% success rate implied by

the more comprehensive measure based on utilization trends.7 Despite over 60% of procedures

succeeding (regardless of the measure used), administrators are very hesitant to cover these pro-

cedures. As shown in Table 2, almost 80% of the time these procedures are non-covered, while

even the most generous administrator only fully covers less than 12% of procedure-months.

4 Impact of Coverage

In this section I present evidence that local coverage decisions made by Medicare Administra-

tive Contractors impact the adoption of new medical procedures. This result is important both

in its own right and instrumentally for addressing the question of how these regulators should

set their evidentiary thresholds. On its own, the impact of local Medicare coverage decisions

has implications for geographic variation in medical practice and health outcomes (Fisher et al.,

2003a,b; Finkelstein et al., 2016). Furthermore, there is very limited evidence on the influence

of Medicare contractors on health care practice (League, 2023; Wilk et al., 2018; Carlson et al.,

2009; Foote et al., 2008). Instrumentally, understanding the magnitude of the effect of coverage

on utilization is key to understanding how Medicare administrators should set their evidentiary

standards.

To shed light on this question, I estimate event studies of coverage changes. The primary

specification I use is

(1) Ypjt = β0 + β1Coveredpjt + γpj + γpt + εpjt,

where Coveredpjt is an indicator for Medicare coverage of procedure p in jurisdiction j at time t,

γpj and γpt are series of jurisdiction-by-procedure and procedure-by-month fixed effects, and εpjt

is the econometric error term. Dependent variables Ypjt are measures of utilization, including

an indicator for any utilization within the jurisdiction-month, as well as the number of proce-

dures performed per million beneficiaries. Because there are likely spillovers in utilization from

jurisdictions in which coverage changes to those in which it does not, I also estimate a model

without time fixed effects. In so doing, I compare the utilization of each procedure after cov-

erage to its own earlier use in the same jurisdiction rather than comparing the relative changes

in utilization across jurisdictions in which coverage does and does not change. Finally, because

7Throughout the paper, I use whether a procedure’s use rises or falls over time as my primary measure of its
success. In Appendix B, I discuss this decision in greater depth and demonstrate the robustness of my results to
using AMA classifications instead.
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Table 3: Effect of Coverage on Utilization

(1) (2) (3) (4)
Use Rate Use Rate Any Uses Any Uses

Case-by-Case 4.894∗∗∗ 3.884∗ 0.0573∗∗∗ 0.0351∗∗∗

(1.160) (1.547) (0.00337) (0.00315)

Covered 31.61∗∗ 19.98 0.129∗∗∗ 0.0618∗∗∗

(12.11) (14.22) (0.00792) (0.00538)

Jurisdiction FEs 1 1 1 1
Time FEs 0 1 0 1
Dep. Var. Mean 4.867 4.867 0.0623 0.0623
Observations 1,240,776 1,240,776 1,240,776 1,240,776

Notes: An observation is a procedure-jurisdiction-month. Sample consists of monthly
observations from 2002-2017. Use rate is the number of uses of the procedure per million
beneficiaries. Regressions include jurisdiction-by-procedure and procedure-by-month fixed
effects where indicated. Standard errors are clustered at the jurisdiction-by-procedure level.
+, ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, 1% and 0.1% level, respectively.

of concerns about the conventional two-way fixed effects estimator (Callaway and Sant’Anna,

2021; Goodman-Bacon, 2021), in Appendix C I present additional results limiting the treatment

window and employing the stacked regression estimator of Cengiz et al. (2019).

The results of estimation of Equation (1) are presented in Table 3. We see that following a

change in Medicare coverage, utilization rises dramatically. When a procedure is fully covered it

is used over 30 more times per million beneficiaries each month relative to when it is non-covered,

representing an increase over 6 times greater than the mean utilization rate. Relative to juris-

dictions in which coverage does not change, this increase is somewhat attenuated—potentially

indicating spillovers to other jurisdictions—but is still very large.

To understand the dynamic effect of coverage changes, I also estimate

(2) Ypjt =
−2∑

e=−6

βeTpjt(e) +
24∑
e=0

βeTpjt(e) + γpj + γpt + εpjt,

where Tpjt(e) is an indicator for a jurisdiction being e months from a change in coverage. Figure 3

reports estimates of βe for specifications with and without time fixed effects in the model as well

as estimated using stacked regression. Across all three specifications, we see consistent results

indicating a lack of differential trends in utilization prior to coverage being extended followed by

utilization increasing dramatically immediately upon coverage and then gradually continuing to

grow thereafter. That coverage has an immediate impact on utilization indicates that the initial

lack of coverage prevented providers from performing procedures they otherwise would, while the

following gradual increase in utilization is consistent with learning over time about the efficacy
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of the newly covered procedure. In the next section of the paper, I will more closely examine

this and other potential causes of the growth in utilization following coverage.

Figure 3: Change in Utilization at Coverage Change
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Notes: The figures report estimates of βe from Equation (2) for e ∈ {−6, . . . , 24}. An obser-
vation is a jurisdiction-procedure-month tuple. Panel (a) includes estimates without time
fixed effects. Panel (b) uses the two-way fixed effects estimator. Panel (c) uses the stacked
regression estimator. For all three specifications, only treated jurisdiction-procedure pairs
in the data for the entire treatment window are included along with untreated observations.
Error bars give the pointwise 95% confidence intervals. Standard errors are clustered at
the jurisdiction-procedure level.

5 Evidence of Social Learning

Social learning is a phenomenon widely believed to be important in medicine. In opposing

intellectual property rights in medical procedures, the AMA Code of Ethics notes that going back

to the time of Hippocrates, the role of the physician has included being “a teacher who imparts

knowledge of skills and techniques to colleagues, and a student who constantly seeks to keep
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abreast of new medical knowledge” (American Medical Association, 2010). Furthermore, this

learning process generally occurs through channels accessible to the entire medical community,

including word-of-mouth endorsements at national conferences, mass media, and notes in medical

journals (McKinlay, 1981). In line with this sentiment, empirical research has documented that

health care providers learn from the experiences of one another (Coleman et al., 1957; Allen

et al., 2019; Soumerai et al., 1998; Zheng et al., 2010; Agha and Molitor, 2018). However, to

my knowledge, no empirical research has investigated the global knowledge spillovers from each

physician to the entire medical community that I document here.

To document social learning, I will exploit the unique opportunity granted by the variabil-

ity in Medicare coverage rules along with the high degree of uncertainty in the value of the

innovations I study. Separating social learning from other phenomena that may be driving the

adoption or de-adoption of new innovations is generally difficult because the global spillovers

across providers means there is rarely a control group that does not have access to the common

pool of information. Similarly, adoption decisions are generally made in response to the beliefs

of the potential adopters about the value of the innovation. To overcome these issues, I exploit

variation in the incentives of providers to adopt new procedures, as well as heterogeneity in the

underlying value of each innovation. Heterogeneity in the patterns of diffusion between successful

and unsuccessful innovations is key to separating learning from other drivers of diffusion because

while many potential drivers of adoption can predict greater adoption over time, very few of them

can predict de-adoption. In contrast, social learning makes opposite predictions for the trends of

adoption for innovations that are good or bad.8 To that end, I will present heterogeneity in the

effect of increased information by whether the procedure turned out to be of high or low value.

In this section, I present three pieces of evidence that social learning is important in this

setting. The first is that there are spillovers in utilization from jurisdictions that see a change

in coverage to jurisdictions that do not, consistent with providers responding to the experiences

of providers in other jurisdictions. The second is that idiosyncratic increases in utilization cause

persistent changes in utilization. For high value innovations, positive shocks to early use lead to

persistently higher utilization as providers more quickly learn the value of the procedure while

for low value innovations, positive shocks to early use have no such effect. The third piece of

evidence is that the effect of coverage may differ by the size of the jurisdiction, with coverage

having a qualitatively larger effect for larger jurisdictions in which the opportunity to generate

quality signals is higher, with this effect flipping sign for de-adopted procedures.

8The idea that learning can be identified by a negative reaction to adverse information has also been used by
Anand and Shachar (2011), who demonstrate that being exposed to advertisements for television shows lowers the
likelihood of watching for viewers whose characteristics indicate the show is a bad match for them while having
the opposite effect on viewers who are good matches.
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5.1 Spillovers from Coverage

As shown in Section 4, Medicare coverage of a new procedure increases its utilization in

jurisdictions in which it is covered. Social learning predicts that by increasing the utilization

of the procedure, coverage will also decrease uncertainty about the value of the procedure for

all providers. Importantly, this decreased uncertainty will occur not only for providers in ju-

risdictions in which the coverage rules are loosened but for all providers. Furthermore, while

this reduction in uncertainty will increase utilization for procedures that are better than many

providers believe, for low value procedures the additional utilization will reveal that the innova-

tion is worse than many of the providers already using the procedure believe, leading utilization

to fall. Thus, for successful procedures, social learning predicts that extending coverage will lead

to increased utilization even in jurisdictions that are not subject to a change in local coverage

while for unsuccessful procedures, the opposite will be the case.

To test this prediction, I use stacked regression to estimate

(3) Ypjtg =
−2∑

e=−6

βeTpjtg(e) +
24∑
e=0

βeTpjtg(e) +
−2∑

e=−6

τeEpjtg(e) +
24∑
e=0

τeEpjtg(e) + γpjg + εpjtg,

where Epjtg(e) is an indicator for being e months from treatment date g = e + t for both

jurisdictions j that see coverage change in month g for procedure p along with the control

jurisdictions in which jurisdiction does not change during the event window. Estimation of this

equation relies on the stacked regression estimator’s explicit matching of jurisdictions in which

coverage changes with suitable comparison jurisdictions in which coverage does not change to

create many 2x2 difference-in-differences events. The series of τe coefficients thus give the time

series change in utilization in jurisdictions in which coverage does not change as coverage in

another jurisdiction changes. Under the assumption that the only thing determining time series

variation in utilization is changes in beliefs about the efficacy of the procedure coming from social

learning, τe identifies the knowledge spillovers from jurisdictions in which coverage changes to

those in which it does not. As in Equation (2), βe identifies the differential change in utilization

in jurisdictions in which coverage changes and (under the assumption of parallel trends) the effect

of coverage on utilization independent of the resulting generation of any universally accessible

knowledge.

Figure 4a presents estimates of τe and βe+ τe for procedures that are ex post successful while

Figure 4b presents estimates using a sample limited to those procedures whose use falls over

time. Notice that for both groups of procedures, coverage increases utilization in jurisdictions

in which coverage changes (the blue line) as providers’ financial and regulatory incentives to use

the new procedure become more favorable. However, the impact of coverage on jurisdictions

in which coverage does not change differ by the underlying value of the procedure. For high-
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value procedures, use of the new procedure in these jurisdictions rises, while utilization falls

for low-value procedures. This is consistent with providers everywhere updating their beliefs

in response to the information generated by the increased utilization in jurisdictions in which

coverage changes. Further supporting this interpretation are the facts that there are not pre-

trends in the utilization of these procedures before the change in coverage and that the spillovers

in utilization only occur gradually as the medical community’s experience with the procedure

grows.

Figure 4: Change in Utilization at Coverage Change for Treatment and Con-
trol Jurisdictions

(a) Adopted Procedures
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Notes: The figures report estimates of τe (in red) and βe + τe (in blue) from Equation (3)
for e ∈ {−6, . . . , 24}. An observation is a jurisdiction-procedure-month-group tuple, where
groups are defined by the stacked regression procedure defined in Appendix C. Panel (a)
presents estimates for the sample limited to procedures whose use rises over time, while
panel (b) presents estimates for procedures whose use falls over time. 95% confidence
intervals are given by the translucent tickless lines of the relevant color. Standard errors
are clustered at the group level.

5.2 Persistence in Shocks to Use

In the previous subsection, I used administrator coverage decisions as a source of variation

in utilization that I could use to examine the impact of shocks to utilization in one jurisdiction

on utilization in another. In this subsection, I use administrator coverage decisions to learn the

beliefs of the medical community about the value of each procedure. Because administrators

are tasked with covering procedures for which the available evidence supports its use, a greater

share of administrators offering coverage of a procedure indicates that the evidence supporting

its use is stronger. In Appendix D, I both prove this formally using the model of administrator

behavior outlined in Section 6 as well as present empirical evidence that provider beliefs about

a procedure’s efficacy correspond to those of the Medicare administrators.
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Table 4: Persistence of Idiosyncratic Shocks to Use

(1) (2) (3)
Use Rate Use Rate Use Rate

Lagged Use 1.349∗∗∗ 1.155∗∗∗ 0.945∗∗∗

(0.259) (0.212) (0.197)
Lagged Use × De-Adopted -0.685∗∗ -0.671∗∗ -0.794∗∗∗

(0.256) (0.205) (0.212)

Months of Lag 6 12 24
Dep. Var. Mean 6.127 6.473 6.176
Observations 19,710 17,658 13,842

Notes: Estimates of β1 and β2 from Equation (4). An observation is a
procedure-month pair. Standard errors are clustered at the procedure level.
+, ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, 1% and 0.1% level,
respectively.

Using the share of administrators covering a procedure as a proxy for beliefs about its value,

I can isolate idiosyncratic shocks to use and test their persistence over time. In particular, I

can estimate heterogeneity in the persistence of these shocks to use by whether the procedure

turns out to be of high or low value. In so doing, I can compare procedures that initially have

the same support among administrators (i.e., about which the medical community has the same

ex-ante beliefs). Social learning predicts that for procedures that are better than the medical

community believes, idiosyncratic increases in utilization should lead to greater utilization later

on as providers learn about the procedure’s value more quickly while for procedures that are

worse than expected, these positive shocks should not be persistent. To make this comparison,

I estimate

(4) Ypt = β1Y
l
pt + β2Y

l
pt × LowV aluep + β3ShareCovlpt + β4ShareCaselpt + γt + γp + εpjt,

where Ypt is the utilization of procedure p at time t and Y l
pt is utilization at time t−l, LowV aluep is

an indicator for whether procedure p is ultimately de-adopted, and ShareCovlpt and ShareCaselpt

are the shares of administrators in period t− l that cover the procedure fully or on a case-by-case

basis, respectively.

Table 4 presents estimates of β1 and β2 from Equation (4). We see that for successful pro-

cedures, positive shocks to past use positively predict future use, while this is not true for

de-adopted procedures. This is consistent with social learning: idiosyncratic shocks to use create

unexpected signals of a procedure’s value that affect later utilization.

In addition to exploiting general idiosyncratic shocks, I can also use idiosyncratic shocks of a

particular type: those induced by the size of the jurisdictions in which the procedure is covered.

As shown in Figure 5, there is significant variation in the share of beneficiaries covered by each
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administrator. Furthermore, while the Centers for Medicare and Medicaid Services has recently

attempted to balance the workload across administrators (CMS, 2005), there remains significant

variation over time as the Medicare Administrative Contractor jurisdictions were consolidated.

These differences in the number of providers subject to the coverage determinations of each

administrator can be used as an instrument for early utilization of a procedure. The intuition is

that while the total amount of utilization of a procedure is affected by the size of the jurisdiction

in which the procedure is covered, the underlying quality of the innovation is only related to the

share of administrators that deem the procedure worthy of Medicare coverage. To implement

this strategy, I estimate the equation

(5) Ypt = β1Y
l
pt + β3ShareCovlpt + β4ShareCaselpt + γt + γp + εpjt,

using two-stage least squares, where the first stage equation is given by

(6) Y l
pt = α1PopCovlpt + α2PopCaselpt + α3ShareCovlpt + α4ShareCaselpt + δt + δp + ε̃pjt,

where PopCovlpt and PopCaselpt, the excluded instruments for lagged utilization, are the number

of beneficiaries living in jurisdictions in which the procedure is covered fully or on a case-by-case

basis, respectively. For this instrumental variables strategy to be valid, it must be the case that

PopCovlpt and PopCaselpt are uncorrelated with εpjt. In this context, this entails assuming that

the size of the jurisdictions in which the procedures are covered earlier is only related to later use

of the procedure through its effect on earlier utilization. In addition to this exclusion restriction,

the other key assumption is relevance: that the size of the jurisdictions in which the procedure

is covered actually affects the total use of the procedure. As shown in Figure 6, the number

of beneficiaries living in jurisdictions in which the procedure is covered is positively related to

the total uses of that procedure even conditional on the share of administrators deeming the

procedure fit for coverage.

Table 5 gives the two-stage least squares estimates of β1 separately for adopted and de-

adopted procedures. As before, we see that for successful innovations, more early utilization

positively affects later utilization, while the opposite is true for unsuccessful procedures. Here

the shocks to early use are isolated to those caused by the size of the jurisdictions in which it is

covered. Again, the heterogeneity in the persistence of early shocks by whether the procedure

is eventually found to be effective is key evidence that the mechanism is social learning, but

it is also important for validating the identification strategy. That for de-adopted procedures,

the size of the early-covering administrative jurisdictions is negatively related to its later use

refutes the potential worry that the determinations of contractors administering larger areas

hold greater sway. In these cases, utilization fell more quickly despite (or through its impact on

early utilization and information availability, because of) the endorsement by the administrators
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Figure 5: Share of Population of Each Jurisdiction
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Notes: Figure presents the share of beneficiaries living in jurisdictions administered by
each administrative company in each month.

of large jurisdictions.

5.3 Heterogeneity by Jurisdiction Size

The third piece of evidence of social learning I present is suggestive evidence of heterogeneity

in the size of the effect of coverage by the size of the jurisdiction. In particular, I show that when

coverage is extended to a new procedure, the response in larger jurisdictions is qualitatively more

sensitive to the underlying value of the innovation. That is, for successful innovations, larger

jurisdictions adopt the procedure more rapidly than smaller jurisdictions, while for unsuccessful

ones, they de-adopt them more rapidly. This phenomenon can be explained by social learning

as larger jurisdictions create more signals of a procedure’s quality.

I estimate the equation

(7) Ypjt =
−2∑

e=−6

βeTpjt(e)+
24∑
e=0

βeTpjt(e)+
−2∑

e=−6

ϕeTpjt(e)×Sizejt+
24∑
e=0

ϕeTpjt(e)×Sizejt+γpj+εpjt,

where Sizejt is the total population covered by the administrator. The set of ϕe coefficients

are the coefficients of interest as they give the differential change in utilization depending on

the covering jurisdiction’s size. Notice that there are no time fixed effects, so this specification
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Figure 6: Relationship Between Covered Population and Use
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Notes: Figure presents the average monthly utilization per million beneficiaries for each
of nine quantiles of the total number of beneficiaries living in jurisdictions in which the
procedure is covered fully or on a case-by-case basis, adjusted for differences in the share
of administrators covering the procedure. An observation is a procedure-month pair. The
red line gives the predicted values from estimates of Equation 6.

compares how utilization changes at coverage between larger and smaller jurisdictions but does

not compare jurisdictions in which coverage changes to those in which it does not. This is

important because with global knowledge spillovers, the extra information generated when a

procedure becomes covered in a larger jurisdiction would affect utilization in all other jurisdictions

as well, meaning there would likely be no differential change relative to the jurisdictions without

coverage changes depending on the size of the covering jurisdiction.

Figure 7 presents estimates of ϕe in Equation (7) separately for procedures that are eventually

adopted and those that are not. We see that for adopted procedures, utilization grows more

following a loosening of the coverage rules for larger jurisdictions compared to smaller ones,

although this difference is not statistically significant. After there being no discernible difference

immediately following the change in coverage, the difference grows as time passes. This is

what would be expected if social learning is driving the difference: the additional information

generated by the additional utilization accumulates slowly and builds on itself to increasingly lead

providers to adopt the procedure. For de-adopted procedures, we see the opposite pattern. For

these procedures, larger jurisdictions see less utilization after coverage. This too is consistent

with the higher level of use in the larger jurisdiction generating more negative signals of the

procedure’s quality, leading providers to become less likely to perform the procedure.
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Table 5: Persistence of Idiosyncratic Shocks to Use, Jurisdiction Size IV

Adopted De-Adopted

(1) (2) (3) (4)
Use Rate Use Rate Use Rate Use Rate

Lagged Use 3.156∗∗ 3.088∗∗ -2.582 -3.352
(0.962) (0.939) (3.868) (4.664)

Months of Lag 24 24 24 24
Current Cov. Cont. 0 1 0 1
Dep. Var. Mean 9.600 9.600 2.141 2.141
Observations 7,488 7,488 6,354 6,354

Notes: Two-stage least squares estimates of β1 from Equation (5). An observa-
tion is a procedure-month pair. Dependent variable is the number of uses of the
procedure per million Traditional Medicare beneficiaries. Models in columns (2)
and (4) include controls for the contemporary coverage status of the procedures.
Standard errors are clustered at the procedure level. +, ∗, ∗∗ and ∗∗∗ indicate
significance at the 10%, 5%, 1% and 0.1% level, respectively.

Figure 7: Change in Utilization at Coverage Change for Treatment and Con-
trol Jurisdictions

(a) Adopted Procedures
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(b) De-Adopted Procedures
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Notes: The figures report estimates of ϕe from Equation (7) for e ∈ {−6, . . . , 24}. An
observation is a MAC-procedure-month tuple. Dependent variable is the number of uses of
the procedure per million Traditional Medicare beneficiaries. Panel (a) presents estimates
for the sample limited to procedures whose use rises over time, while panel (b) presents
estimates for procedures whose use falls over time. Error bars give the pointwise 95%
confidence intervals. Standard errors are clustered at the MAC-procedure level.

5.4 Other Potential Explanations

While I have presented multiple pieces of evidence consistent with social learning being im-

portant in this setting, this does not rule out the presence of other important drivers of innovation

adoption and diffusion. In this subsection, I discuss a few of the most plausible alternative ex-
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planations and explain why I do not believe them to be first-order issues for the diffusion of these

innovations.

The first alternative driver of diffusion in this context is technological change. Perhaps the

reason I observe increasing use over time for many of these procedures is because the actual

value of the procedure is increasing, either because of improvements exogenous to the amount

of utilization of the procedure or as a result of increased use as providers tinker with how to

best perform the procedure. A few institutional details and patterns in the data indicate that

changes to the value of the procedure are unlikely to occur. First, improvement in the value

of a procedure could not explain the widespread de-adoption of many of the procedures that I

observe. Second, many of these procedures are related to medical devices, which to be altered

require approval from the Food and Drug Administration, making rapid improvement difficult.9

Finally, the codes created by the AMA to classify these procedures are quite specific and are

revised to reflect evolving ways of doing procedures, but this happens only very infrequently,

indicating that the nature of the new procedures is quite stable once they are introduced.10

While these points cast doubt on change in the actual value of the innovations being first-order,

the possibility of improvement cannot be categorically ruled out. In light of this, I should point

out that if over time providers are learning how best to perform a procedure and this collective

improvement process is a result of the wider employment of the procedure, then the implications

for administrators’ coverage decisions would be largely the same as under social learning: there is

a positive information externality from the wider use of the procedure, so evidentiary thresholds

should be lower than otherwise.

Another alternative explanation is learning from clinical trials. The purpose of clinical trials

is to generate information that influences medical practice, and there is extensive literature

showing that clinical trials do just that (Depalo et al., 2019; Avdic et al., 2018). Furthermore,

unfavorable clinical trial results can generate the de-adoption patterns I observe (Grennan and

Town, 2020). However, clinical trials are likely only a minor determinant of the spread of the

new procedures I study. This is because clinical trials of these procedures are surprisingly rare.

As noted by Dranove et al. (2021), from 2008 to 2017 only 20% of the procedures approved by

the American Medical Association were supported by randomized controlled trials. Because so

few of these procedures are subject to randomized trials, there is limited scope for these trials to

impact their diffusion.

So in light of the lack of evidence supporting the factors considered here along with the

extensive evidence consistent with social learning, I conclude that social learning is a primary

driver of the diffusion of new medical procedures. To that end, in the next section, I write down

a model of provider procedure adoption that focuses on social learning in order to both estimate

9Dranove et al. (2021) find that just over half of approved category III CPT applications from 2008 and 2017
were associated with new devices.

10Out of the 337 codes operative from 2002 to 2014, there were only 7 total revisions to category III CPT codes.
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the size of the social learning externality as well as to understand how it impacts the optimal

evidentiary standard for Medicare coverage of new medical procedures.

6 Model

Having demonstrated the importance of social learning in this context, I now build a model

of innovation adoption and diffusion around this phenomenon in order to assess the current evi-

dentiary standards for coverage used by Medicare administrators. The model I employ for this

purpose is similar to that used by a number of studies of learning by health care providers. For

example, Coscelli and Shum (2004) model the adoption of a new anti-ulcer drug by Italian physi-

cians and consider how providers learn about the drug’s efficacy for different types of patients.

Other studies highlight the often dynamic nature of technology adoption decisions (Crawford and

Shum, 2003; Ferreyra and Kosenok, 2011) and the role of human capital accumulation and de-

preciation (Gowrisankaran et al., 2006; Hockenberry and Helmchen, 2014; Gong, 2017) in patient

outcomes. These studies form an important foundation for the model of physicians as Bayesian

learners updating their beliefs about the value of a new innovation that I employ in this paper.

I depart from these existing models in a number of important ways. First, I incorporate

spillovers in knowledge across providers to account for social learning. I am able to do this

because, unlike previous researchers, I am able to exploit an exogenous shifter in the national

body of knowledge available to a physician at the time he or she first utilizes the innovation:

variation in Medicare coverage. In line with the evidence I present of social learning in this

context, I estimate that informational spillovers from a doctor to the wider medical community

meaningfully impact utilization. Next, rather than examining a single innovation, I consider an

entire class of innovations, which is crucial to asking the policy question of how generous coverage

should be in general rather than for an innovation that ex-post was successful or not. This is

particularly important in light of the large degree of uncertainty and heterogeneity in innovation

value that I find. Finally, my incorporation of Medicare coverage decisions lends my results to

natural policy counterfactuals. I find that Medicare could improve welfare either by reducing or

increasing coverage.

I model the physician’s decision to adopt a new procedure as a static one depending on the

physician’s beliefs about the value of the new procedure, the local coverage rules, the physician’s

unobservable type. Specifically, the utility of physician i from adopting the new procedure p at

time t is given by

Uipt = Eipt[δ
∗
p]− β1pCaseipt − β2pNoncovipt −Xip,

where Xip is the physician’s ability to perform procedure p, Caseipt and Noncovipt are indicators

for whether procedure p is covered in the physician’s jurisdiction at time t on a case-by-case

basis or fully non-covered, and Eipt[δ
∗
p] is the belief of physician i about the value of procedure p
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relative to the outside option with value normalized to zero.

The key difficulty for physicians in this model is that rather than being able to observe δ∗p

directly, they are uncertain about the quality of the new procedure and so must base their

adoption decision on their expectation about its value. The value of the outside option is

normalized to zero, and physicians face no uncertainty about their type, so a physician will

adopt the new procedure for all eligible patients the physician treats if and only if Eipt[δ
∗
p] >

Xip+β1pCaseipt+β2pNoncovipt. This means that the higher physicians believe the quality of the

new procedure to be, the more will adopt it conditional on the coverage rules they face. Further-

more, physicians maximize per-period utility in a myopic way: they adopt the procedure when

they believe adoption will give them positive utility in the current period and do not consider

how their adoption decision might affect their future beliefs.

The initial beliefs of physicians are distributed normally (independent of physician type) with

a mean of δ0p and a standard deviation of σδp. Note that δ0p may or may not equal δ∗p (physicians

may be optimistic or pessimistic) and that σδp captures the level of initial uncertainty about the

efficacy of the new procedure.

Each time a physician utilizes the new procedure, it creates a noisy signal of the true value

distributed normally with a mean of the true value δ∗p and a standard deviation σνp. Importantly,

this signal is observable not only to the physician performing the procedure but all physicians.

The entire medical community is thus able to learn from the experience of each physician and

socially learn about the true value of the new procedure. The size of this social learning exter-

nality depends crucially on the precision of the signals generated through the procedure’s use

such that the less noisy the signal (the smaller is σνp) the more able the medical community is to

aggregate the information generated by each discrete use of the procedure. To model this signal,

I assume that each provider receives an independent signal each time the procedure is performed.

That is, the medical community as a whole receives a distribution of signals centered around the

true value of the procedure each time it is utilized.

Physicians update their beliefs about the efficacy of the procedure in light of the signals

generated through its use according to Bayes rule. This means that after receiving n signals

{νipk}k∈{1,...,n}, the beliefs of physician i are distributed normally with mean µipn and standard

deviation σipn, where

σipn =
σνpσδp√
σ2
νp + nσ2

δp

and µipn = σ2
ipn

(
δ0ip
σ2
δp

+
n∑

k=1

νipk
σ2
νp

)
.

Notice that all physicians—regardless of their initial beliefs—are equally uncertain about the

value of the procedure at any point in time, but their beliefs about the value of the procedure

differ because of their different priors and the different values of the signals received. That is,
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σipn = σall,pn for all i, while µipn is distributed normally with mean µa
pn and standard deviation

σa
pn, where

σm
pn =

σνpσδp√
σ2
νp + nσ2

δp

= σall,pn and µm
pn = σ2

all,pn

(
δ0p
σ2
δp

+
nδ∗p
σ2
νp

)
.

Proofs that the values of µipn are so distributed are given in Appendix E.

There are two types of patients: those for whom the new treatment is appropriate and those

for whom it is not. Physicians are able to observe patients’ types, so if the physician has adopted

the procedure, the new treatment will be used for all and only patients for whom it is appropriate.

The issue is that patients should be treated only by physicians able to perform the procedure.

So the welfare loss from uncertainty comes from physicians unable to effectively employ the

procedure performing it and physicians who are able foregoing the opportunity to use it. More

explicitly, the utility of patient j treated using the new procedure p by provider i at time t is

given by

Viptj = ηpj(δ
∗
p −Xip),

where ηpj is an indicator equal to 1 if the treatment is appropriate for patient j and 0 otherwise

and Xip is physician i’s ability to perform procedure p. ηpj is a Bernoulli random variable with

mean ηp.

Similar to physicians, administrators are also initially uncertain about the value of the new

procedure and make coverage decisions based on their beliefs about its value. Each administrator

a sets its evidentiary standard for coverage sap for procedure p according to

sap = θa + µp + εap,

where θa and µp are administrator and procedure fixed effects and εap is a mean-zero error term.

The administrator will cover the new procedure if the evidence supporting its use etp is greater

than sap.

6.1 Identification and Estimation

The unknown parameters in my model of provider innovation adoption that I must estimate

are β1p, β2p, δ
∗
p, σδp, σνp, ηp, and δ0p. Briefly, β1p and β2p are identified by differences in utilization

across jurisdictions with differences in coverage within the same time period. δ∗p is identified by

projecting the trend in utilization to its steady state. σδp and σνp are identified by how tightly

the convergence of utilization to its steady state level tracks utilization, including utilization

in other jurisdictions coming from changes in the coverage rules in those jurisdictions. δ0 is

identified by the difference in utilization of the new procedure when it is first introduced and
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the end of the sample period. Finally, ηp is identified by the share of patients treated using

the new procedure by physicians who have adopted the procedure. I assume physician types

Xip are normally distributed and normalize the mean and standard deviation of the distribution

corresponding to each procedure to be zero and one, respectively.

In order to ensure identification of all model parameters for each procedure, I limit the esti-

mation sample to procedures for which I observe both coverage and non-coverage. As discussed

above, without changes in coverage of the procedure, the model is not identified. Furthermore,

this restriction should be thought of as limiting the sample to those for which the contractors

could have plausibly decided to have a different coverage decision. This restriction results in a

sample of 195 procedures.

I estimate the parameters of the physician adoption decision by maximum likelihood estima-

tion. The log-likelihood function is given by

L(θp|Xcov,pt) =∑
t∈{1,...,T}

∑
cov∈{−1,0,1}

log

((
gcov,pt

ycov,pt

))
+ ycov,pt log(αcov,ptηp) + (gcov,pt − ycov,pt) log(1− αcov,ptηp),

where

αcov,pt = 1− Φ

−
µm
pn − β1pCaseipt − β2pNoncovipt√(

σm
pn

)2
+ 1

 .

Note that npt is the total previous uses of procedure p prior to time t, gcov,pt is the total number

of patients in the consideration sets of physicians in jurisdictions with coverage level cov ∈ {0, 1},
and ycov,pt is the total number of patients treated using procedure p at time t in jurisdictions

with coverage level cov.11 I define the consideration set of patients potentially suitable for the

treatment to be all patients with a primary diagnosis shared by any patient ever treated with

the procedure who is treated by a physician whose specialty is that of any physician who ever

uses the procedure.

The model of administrator behavior can be estimated separately from the provider learning

model. In the model of administrator behavior, evidence etp supporting procedure p at time t can

be parameterized as a procedure-month fixed effect. Under the assumption that εap is type-one

extreme value, θa can be estimated using logistic regression where the coverage probability is

given by

(8) P (Coveratp) =
exp(θa + γtp)

1 + exp(θa + γtp)

where Coveratp is an indicator for whether administrator a fully covers procedure p at time t and

11The derivation of this likelihood function is presented in Appendix E.
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γtp is a series of procedure-by-month fixed effects. Thus the administrator-specific propensities

to cover new procedures are identified by within-procedure-month differences in coverage.

6.2 Estimation Results

First, I assess the fit of my model to the data. Figure 8 below plots the observed and model-

predicted level of utilization for each procedure in the sample. Note that with few exceptions,

the predicted uses of the procedure are nearly identical to the observed level of utilization.

Figure 8: Observed and Predicted Levels of Utilization
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Notes: The figure reports the observed uses of each procedure along with the model-
predicted number of uses for each procedure in the structural estimation sample. An
observation is a procedure. Sample is limited to the 195 procedures for which I observe
both coverage and non-coverage in the data.

Next, I report the estimated differences in the probability of coverage for each administra-

tor for a marginal new procedure. Figure 9 reports these differences relative to Noridian, the

administrator most generous with coverage of new procedures. I find wide heterogeneity in the

propensity of each administrator to cover new procedures. These differences highlight the wide

range of plausible evidentiary standards for the coverage of new procedures and make clear the

uncertainty of policymakers about the appropriate standard.

Table 6 reports summary statistics of the estimated parameters for each procedure. These

results suggest that relative to having the procedure fully covered, having the procedure covered

on a case-by-case basis makes the procedure somewhat less appealing to providers on average,

while having it completely non-covered makes it much less appealing. In particular, I estimate
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Figure 9: Estimated Differences in Coverage Probabilities Across Adminis-
trators
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Notes: The figure reports estimates of θa from Equation (8) transformed to marginal effects.
An observation is a MAC-procedure-month tuple. Dependent variable is an indicator for
full coverage of the procedure. Error bars give the 95% confidence intervals. Standard
errors are clustered at the MAC-procedure and procedure-month levels.

that β2p is positive for 89% of procedures is never statistically significantly negative at the 95%

confidence level. These results are consistent with the reduced form evidence presented in Section

4.

These results indicate there is significant uncertainty about the value of each procedure. When

a procedure is introduced, the distribution of beliefs across providers is 25 times wider than the

distribution of ability to perform the procedure, on average. Furthermore, the median provider

is able to correctly distinguish a new procedure’s value from the incumbent procedure at the 95%

confidence level only 13% of the time. And while additional utilization does generate meaningful

information about the procedure’s value, the standard deviation of this signal is almost 20 times

greater than that of physicians’ priors. This means that it takes 1,243 subsequent signals to

match the precision of the median physician’s prior.

My estimates of ηp indicate that among patients in the consideration set for being treated

with the new procedure, the new procedure is appropriate 8.9% of them on average. In Appendix

F, I present the full distribution of the estimates of ηp, showing that for some procedures, the

value of ηp is much higher. In the same appendix, I also validate this distribution by estimating

ηp separately from all other model parameters under a behavioral assumption.

Interpreting the δ parameters, we see that on average these new procedures are better than
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Table 6: Summary Statistics of Parameter Estimates

Parameter Mean Std. Dev.

β1p 3.293 32.18
β2p 19.40 49.61
σδp 25.46 33.85
σνp 501.6 96.96
δ∗p 10.45 99.34
δ0p -29.40 51.14
ηp 0.089 0.254

Notes: Estimates of structural model
parameters. An observation is a proce-
dure. Sample is limited to the 195 pro-
cedures for which I observe both cover-
age and non-coverage in the data.

the outside option although providers initially believe they are worse. The estimate of δ∗p is

positive for 58.2% of procedures, meaning that while the new procedures are better on average

and the median innovation is an improvement over the incumbent procedure, a significant portion

of procedures are worse than the outside option.

The full distributions of providers’ initial beliefs and the true value of each procedure are

presented in Figure 10. The distributions are quite similar, although the modal prior is somewhat

lower than the modal true value. The distribution of priors being below that of the true values

is consistent with either pessimism or risk aversion on the part of providers. Insofar as the

distributions have the same shape, it is consistent with physician priors being drawn from the

same distribution as the true values, albeit with a level shift from pessimism or risk aversion.

Interpreting the difference as being attributable to risk aversion, these distributions are consistent

with rational expectations on the part of providers.

Regardless of the similarity of the distributions of the priors and true procedure values, I

estimate that physicians are overconfident in their beliefs. For example, for only 59.3%, 51.6%,

and 39.8% of procedures does the median physician have the true procedure value in their 99%,

95%, and 90% confidence intervals of beliefs, respectively. Furthermore, there is little correlation

between physicians’ prior beliefs and the true value of the procedure, with a correlation coefficient

between δ∗p and δ0p of 0.05. The median physician is pessimistic about 76.9% of procedures and

only significantly optimistic for 4.4%.12

12By “significantly”, I mean the median physician’s prior 95% confidence interval does not contain the true
procedure value.
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Figure 10: Estimated Distribution of Physician Priors and True Procedure
Values
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Notes: The solid blue line reports the estimated probability density function of δ∗p , while the
dashed red line reports the estimated probability density function of δ0p. An observation
is a procedure. Sample is limited to the 195 procedures for which I observe both coverage
and non-coverage in the data.

6.3 Welfare

With the model parameters in hand, I can assess the welfare impact of each new procedure as

well as assess the welfare consequences of counterfactual policies. Because the welfare to patient

j from being treated with the outside option is 0, total welfare Wcov,pt from procedure p under

coverage regime cov at time t is given by

Wcov,pt = ycov,pt
(
δ∗p − E[Xip|Uipt > 0]

)
= ycov,pt

(
δ∗p − E[Xip|Xip < Γcov,pt]

)
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where Γcov,pt ≡ µa
pn−β1pCaseipt−β2pNoncovipt for a ∈ {s,m}. Because Xipt is standard normally

distributed, we have that

E[Xip|Xip < Γcov,pt] = −
exp

(
−Γ2

cov,pt

2

)
√
2π (1− Φ(Γcov,pt))

,

so the total welfare from procedure p, Wp, is given by

Wp =
∑

t∈{1,...,T}

∑
cov∈{−1,0,1}

Wcov,pt =
∑

t∈{1,...,T}

∑
cov∈{−1,0,1}

ycov,pt

δ∗p +
exp

(
−Γ2

cov,pt

2

)
√
2π (1− Φ(Γcov,pt))

 .

I consider welfare under 4 scenarios. First, I estimate the level of welfare currently. Then

I consider welfare under counterfactual coverage rules, including universal coverage and non-

coverage of new procedures. I also estimate the possible welfare gains from contractors covering

all and only procedures that are better than their outside options (Caseipt = Noncovipt = 0 ⇔
δ∗p ≥ 0).13 In order to speak to the welfare costs of uncertainty and the value of physician learning,

I estimate welfare under each of these scenarios under the status quo information environment as

well as in the cases that physicians were able to perfectly observe the value of each new procedure

and were they unable to learn from the experience of others. As a benchmark, note that were

the use of these new procedures forbidden, total welfare would be equal to 0.

Table 7 reports welfare estimates under each of these scenarios. Focusing first on the results

maintaining the current physician learning parameters reported in the column titled “Status

Quo”, I find that welfare under the current coverage rules is positive, indicating that welfare would

be reduced by forbidding the use of these procedures completely. Note that this is consistent

with the procedures being better than the outside options on average. Similarly, never covering

any of the procedures would meaningfully reduce welfare, albeit even in this scenario, physicians

would, on average, continue to occasionally use high value procedures, meaning welfare would be

higher than a “no Category III procedure use” baseline. Similarly, fully covering all procedures

would dramatically raise welfare relative to the current regime. In fact, were Medicare to cover

only procedures that are better than the incumbent procedure, the welfare gains would be only

modestly larger than if coverage were universal, with universal coverage achieving 93% of the

welfare gains from the infeasible “correct” coverage policy over the status quo.

The model also allows me to quantify the welfare costs of uncertainty and the value of

13Note that this is not the optimal coverage policy for a few reasons, even within the limited context of the
model. First, the contractors do not take physician beliefs or uncertainty into account when deciding coverage
rules. For example, it could be welfare enhancing to fail to cover a procedure that is only slightly better than the
outside option if physicians’ priors are extremely optimistic, avoiding a scenario of significant overuse. Second,
this is a partial equilibrium analysis ignoring the fact that were physicians to recognize that the contractors were
following this coverage rule, they would update their beliefs about the value of the procedure in light of the
contractors’ coverage decisions.
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Table 7: Welfare Estimates

Learning Environment

Coverage Rules No Learning Status Quo No Uncertainty

Actual Coverage -19,198 23,172 1,886,914
Universal Non-Coverage -24,588 1,524 1,757,800
Universal Coverage -18,799 162,730 1,955,349
“Correct” Coverage -11,447 173,055 1,971,605

Notes: Estimates of total welfare from simulations of the model with current and
counterfactual coverage rules and learning parameters. “Correct” coverage means full
coverage for procedures with δ∗p ≥ 0 and non-coverage for all other procedures. The
no learning environment does not allow providers to update their beliefs using signals
of the procedure’s quality, while the no uncertainty environment sets all physicians
beliefs about the value of each new procedure to its true value with no uncertainty.

physician learning. Comparing coverage rules within rows of Table 7, we see that the welfare

costs of imperfect information dwarf those of imperfect coverage rules. Moving from the status

quo to the correct coverage rule achieves only 8.0% of the welfare gains on maintain the current

coverage rules but eliminating physician uncertainty. Another way of interpreting this difference

is that in terms of welfare, the status quo is much closer to a scenario of no learning by physicians

than to an environment with no uncertainty. Note finally that without any learning, the new

procedures are (in the context of the model) a net welfare loss even under infeasible coverage rules

because of the inaccuracy of physician priors. Furthermore, coverage is less welfare-improving

without learning, as allowing physicians to experiment and learn from experience has no value

if they are unable to update their beliefs and practices.

7 Conclusion

In this paper, I consider the tradeoff between allowing experimentation with early access

to innovations and requiring more evidence to support diffusion in the context of new medical

procedures. After showing that the coverage decisions of local Medicare administrators greatly

impact the diffusion of these procedures, I present ample evidence of social learning: health

care providers learn about the value of new procedures from the experiences of other providers.

This represents an important externality from the use of new procedures and is something the

regulators must consider when determining whether to allow the spread of innovations. In order

to quantify this externality and determine the optimal evidentiary standard and coverage policies

in this context, I estimate a structural model of provider learning. The results of this model

indicate that the current coverage regime results in higher welfare than having no utilization of

the new procedures at all, but that more generous coverage rules would lead to large welfare

gains. Furthermore, I find that the welfare costs of physician uncertainty are large and that
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learning and generous coverage rules are complementary.

Beyond offering prescriptions for how to improve Medicare coverage of new procedures, the

evidence I present of social learning highlights its potential importance in other contexts. As

policymakers weigh the tradeoffs of encouraging the promotion of innovations of uncertain value,

the potential for early experimentation to dispel this uncertainty should lead policymakers to

consider the potential welfare gains from allowing experimentation and encouraging social learn-

ing.
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A Determining Coverage Rules

MACs are tasked with determining whether each individual claim for reimbursement meets

the standard of medical necessity and accords with Medicare regulations. In practice, this

claims processing process is highly systemized, with claims generally being automatically checked

against general rules for whether the claim will be paid out (called “claim edits”). MACs of-

ten inform providers in their jurisdiction of changes to their coverage rules through publicly

available announcements called local coverage decisions. These announcements are available at

https://www.cms.gov/medicare-coverage-database/. Unfortunately, not all claim edits are

publicly announced and available online. For example, while up to 18 administrative companies

were active at one time during my sample period, the maximum number of MACs making their

coverage rules for category III codes publicly available at one time is only eight. For this reason,

I use the claim denial information in the claims data to infer coverage and validate this process

using the coverage rules I do observe.

First, I detect structural breaks in level and trend of denial rates by MAC for each procedure.

Performing a Chow test comparing the fitted model to the denial rate time series before and after

each month, I flag potential structural breaks as the month corresponding to the smallest p-value

rejecting the hypothesis that the time series is the same before and after the potential break,

limiting to breaks corresponding to p-values below 0.1. Next, I manually screen the potential

breaks to limit to those that represent readily apparent coverage changes (i.e. eliminating very

gradual or temporary denial rate changes). Third, I limit the remaining potential coverage

changes to those that represent a change of at least 15 percentage points in the denial rate. This

process results in 106 detected coverage changes. Figure A1 shows that these coverage changes

generally closely correspond to the announced coverage change dates for the MACs for which

these announced rules are available. This is not the case for two MACs (Noridian and Novitas)

for which it is clear that their reported coverage dates are inaccurate batch announcements of

coverage changes that have already occurred.

Having detected changes in coverage, I then turn to classifying the coverage level as fully

covered, covered on a case-by-case basis, or non-covered. These levels correspond to the language

used in the available posted coverage rules and reflect the fact that even for claims reporting

procedures that are not categorically denied, the denial rate tends to be much higher than for

more established procedures. For example, in my sample, the across-procedure average denial

rate is 77% with a standard deviation of over 30 percentage points. In contrast, League (2023)

reports that in 2017 Medicare’s denial rate for medical procedures was only 10 percent. I classify

procedures as fully covered if the denial rate is less than 20%, non-covered if the denial rate is

over 80%, and covered on a case-by-case basis otherwise. Finally, I restrict the earliest date of

coverage (full or case-by-case) to be the later of the date the code became active (to eliminate
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Figure A1: Correspondence of Detected Coverage Changes and Posted An-
nouncements

Notes: The horizontal axis reports the detected coverage change date while the vertical
axis reports the earliest coverage date reported in the posted coverage rules for all MAC-
procedure pairs with a detected coverage change date.

improper payments) and the date of the first covered use (to account for the fact that non-

covered procedures are unlikely to be used and all MACs for which I have posted coverage rules

report a presumption of non-coverage for this class of procedures). As shown in Figure A2, the

changes in coverage I detect correspond to large and immediate changes in the denial rate. Using

this process, I find that 79% of MAC-procedure-month triples correspond to non-coverage, 15%

correspond to coverage on a case-by-case basis, and 6% correspond to full coverage.
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Figure A2: Change in Denial Rate at Coverage Change
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Notes: The figure reports estimates for the change in share of claims denied in the 18
months before and after a change in coverage from non-coverage to full or case-by-case
coverage or from case-by-case coverage to full coverage relative to the month before the
coverage change. An observation is a MAC-procedure-month tuple. Sample is limited to a
balanced panel of MAC-procedure pairs subject to a change in coverage. 95% confidence
interval is shaded in blue. Standard errors are clustered at the MAC-procedure level.
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B Using AMA Decisions as a Measure of Procedure Suc-

cess

While the AMA decisions to promote or delete each code may also be used as a measure

of a procedure’s value, I choose to use whether the procedure’s utilization grew or shrank over

time for a few reasons. First, the AMA has yet to make a determination for many of the

procedures introduced late in my sample period. For these procedures, I am not able to assess

their success on this measure while I am for the measure I use in the main text. Second, my

measure better captures how the beliefs of the medical community evolve. By measuring whether

utilization grows or falls over time, my main measure does a better job of capturing procedures

that providers learn are better or worse than previously believed. That said, my results are

robust to using either measure, which isn’t surprising given their general concordance, as shown

in Table A1.

Next, I demonstrate the robustness of all the results in the main text to using this measure

instead of my main one. This robustness is not surprising given the similarity of the measures.

Figure A3 shows that the spillover from jurisdictions in which coverage changes to other ju-

risdictions similarly differ by whether the procedure was successful along this measure. Table

A2 shows that idiosyncratic shocks to use are persistent only for procedures associated with

promoted codes.

Table A1: Concordance of Success Measures

AMA Code Status

Adoption Status Deleted Outstanding Promoted Total

Adopted 42 56 110 208

20.2% 26.9% 52.9% 60.6%

De-Adopted 53 45 37 135

39.3% 33.3% 27.4% 39.4%

Total 95 101 147 343

27.7% 29.4% 42.9% 100.0%
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Figure A3: Change in Utilization at Coverage Change for Treatment and
Control Jurisdictions
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Notes: The figures report estimates of τe (in red) and βe + τe (in blue) from Equation (3)
for e ∈ {−6, . . . , 24}. An observation is a jurisdiction-procedure-month-group tuple, where
groups are defined by the stacked regression procedure defined in Appendix C. Panel (a)
presents estimates for the sample limited to procedures for which the associated code was
eventually promoted to Category I status by the AMA, while panel (b) presents estimates
for procedures for which the associated code was deleted. 95% confidence intervals are
given by the translucent tickless lines of the relevant color. Standard errors are clustered
at the group level.

Table A2: Persistence of Idiosyncratic Shocks to Use

(1) (2) (3)
Use Rate Use Rate Use Rate

Lagged Use 1.445∗∗∗ 1.226∗∗∗ 0.849∗∗∗

(0.231) (0.229) (0.176)
Lagged Use × Deleted -0.795∗∗∗ -0.589∗ -0.491

(0.218) (0.248) (0.421)

Months of Lag 6 12 24
Dep. Var. Mean 6.127 6.473 6.176
Observations 19,710 17,658 13,842

Notes: Estimates of β1 and β2 from Equation (4). An observation is a
procedure-month pair. Standard errors are clustered at the procedure
level. +, ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, 1% and
0.1% level, respectively.
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C Details on the Estimation of the Effect of Coverage on

Utilization

Here I provide more details on stacked regression and show results from various windows. Both

of these methods can be used to overcome some of the problems with the convention two-way

fixed effects estimator raised by Callaway and Sant’Anna (2021) and Goodman-Bacon (2021),

among others. Stacked regression method, from Cengiz et al. (2019), works by constructing

appropriate controls groups for each transition between different coverage level for each procedure

for each jurisdiction. To implement this method, I create separate datasets for each change of

coverage w (for wave) consisting of the jurisdiction-procedure pair that changes coverage at time

g and control jurisdiction-procedure pairs of the same procedure for which coverage does not

change during the event window. Each of these datasets is appended (or “stacked”) such that

each jurisdiction-procedure pair for which coverage changes appears once while each jurisdiction-

procedure pair may appear as a control multiple times (although with different time values). To

obtain estimates of the dynamic treatment effect of a coverage change, I can then estimate

(9) Ypjtw =
−2∑

e=−K

βeTpjtw(e) +
L∑

e=0

βeTpjtw(e) + αpjw + αptw + εpjtw,

where K gives the size of the treatment window, Tjtw(e) is an indicator for being the jurisdiction-

procedure pair that changes coverage e months from transition (where e denotes event time:

e ≡ t−w), αpjw and αptw are procedure-by-jurisdiction-by-wave and procedure-by-time-by-wave

fixed effects. These fixed effects account for the fact that control observations may appear more

than once in this stacked dataset. Similarly, I can aggregate the pre- and post-coverage change

periods and in this stacked dataset to estimate the average treatment effect of a coverage change

over the L months following the change:

(10) Ypjtw = β

L∑
e=0

Tpjtw(e) + αpjw + αptw + εpjtw,

Analogously, I can aggregate the treatment effect estimate using the traditional two-way fixed

effects estimator to obtain an estimate of the treatment effect of a coverage change. To this, I

use the non-stacked data set to estimate

(11) Ypjt = β
L∑

e=0

Tpjt(e) + γpj + γpt + εpjt.
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Table A3: Effect of Coverage on Utilization

(1) (2) (3) (4) (5) (6)
Use Rate Use Rate Use Rate Any Uses Any Uses Any Uses

Coverage Extended 7.499∗∗∗ 4.781∗∗ 3.505∗ 0.0728∗∗∗ 0.0512∗∗∗ 0.481∗∗∗

(1.355) (1.637) (1.434) (0.00451) (0.00457) (0.00471)

Jurisdiction FEs 1 1 1 1 1 1
Time FEs 0 1 0 1 0 1
Stacked? 0 0 1 0 0 1
Dep. Var. Mean 9.795 2.708 10.54 0.135 0.0473 0.122
Observations 58,454 1,004,226 2,127 58,454 1,004,226 2,217

Notes: An observation is a procedure-jurisdiction-month. Sample consists of monthly observations from 2002-
2017. Use rate is the number of uses of the procedure per million beneficiaries. Regressions include jurisdiction-by-
procedure and procedure-by-month fixed effects where indicated. Standard errors are clustered at the jurisdiction-
by-procedure level. +, ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, 1% and 0.1% level, respectively.

Notice that for both Equations (10) and (11), the β gives the differential change for the L months

after coverage changes in the treated jurisdictions from to the K months before, relative to the

appropriate control jurisdictions.

In Table A3, I present estimates of the treatment effect of extending coverage to a new

procedure using these estimators for the treatment window from K = −6 to L = 24. Because

to estimate Equation (10) I restrict each treatment-control wave w to be a balanced panel and

to estimate Equation (11) I keep only treated jurisdiction-code pairs in the data for the entire

event window, the number of observations differs by the model estimated and the length of the

event window.

Figures A4, A5, A6, and A7 present estimates of Equation (2) with and without time-by-

procedure fixed effects and Equation (9) using treatment windows of L = K = 6, L = K = 12,

L = K = 18, and L = K = 24, respectively.
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Figure A4: Change in Utilization at Coverage Change

(a) No Time Fixed Effects
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(c) Stacked Regression
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Notes: The figures report estimates of βe from Equation (2) and (9) for e ∈ {−6, . . . , 6}.
An observation is a jurisdiction-procedure-month tuple. Panel (a) includes estimates with-
out time fixed effects. Panel (b) uses the two-way fixed effects estimator. Panel (c) uses
the stacked regression estimator. For all three specifications, only treated jurisdiction-
procedure pairs in the data for the entire treatment window are included along with un-
treated observations. Error bars give the pointwise 95% confidence intervals. Standard
errors are clustered at the jurisdiction-procedure level.
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Figure A5: Change in Utilization at Coverage Change

(a) No Time Fixed Effects
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Notes: The figures report estimates of βe from Equation (2) and (9) for e ∈ {−12, . . . , 12}.
An observation is a jurisdiction-procedure-month tuple. Panel (a) includes estimates with-
out time fixed effects. Panel (b) uses the two-way fixed effects estimator. Panel (c) uses
the stacked regression estimator. For all three specifications, only treated jurisdiction-
procedure pairs in the data for the entire treatment window are included along with un-
treated observations. Error bars give the pointwise 95% confidence intervals. Standard
errors are clustered at the jurisdiction-procedure level.
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Figure A6: Change in Utilization at Coverage Change

(a) No Time Fixed Effects
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Notes: The figures report estimates of βe from Equation (2) and (9) for e ∈ {−18, . . . , 18}.
An observation is a jurisdiction-procedure-month tuple. Panel (a) includes estimates with-
out time fixed effects. Panel (b) uses the two-way fixed effects estimator. Panel (c) uses
the stacked regression estimator. For all three specifications, only treated jurisdiction-
procedure pairs in the data for the entire treatment window are included along with un-
treated observations. Error bars give the pointwise 95% confidence intervals. Standard
errors are clustered at the jurisdiction-procedure level.
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Figure A7: Change in Utilization at Coverage Change

(a) No Time Fixed Effects
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Notes: The figures report estimates of βe from Equation (2) and (9) for e ∈ {−24, . . . , 24}.
An observation is a jurisdiction-procedure-month tuple. Panel (a) includes estimates with-
out time fixed effects. Panel (b) uses the two-way fixed effects estimator. Panel (c) uses
the stacked regression estimator. For all three specifications, only treated jurisdiction-
procedure pairs in the data for the entire treatment window are included along with un-
treated observations. Error bars give the pointwise 95% confidence intervals. Standard
errors are clustered at the jurisdiction-procedure level.
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D Using Administrator Decisions to Infer Evidence

In this appendix, I justify my use of the share of administrators covering a procedure as

indicating the strength of the evidence surrounding the procedure’s efficacy. I first do this by

proving that the model of MAC behavior in Section 6 implies that the share of administrators

coverage a procedure is increasing the strength of the evidence:

Proposition 1 The expected share of MACs covering a procedure at any given time is weakly

increasing in the procedure-specific quality of evidence, i.e. et2p2 − µp2 > et1p1 − µp1 implies∫
1
I

∑
i I[et2p2 > sip2 ]dε ≥

∫
1
I

∑
i I[et1p1 > sip1 ]dε.

Proof. Suppose the proposition is false. Then there exists a pair of procedure-months such that

et2p2 − µp2 > et1p1 − µp1 while∫
1

I

∑
i

I[et2p2 − µp2 > θi + εip2 ]dε <

∫
1

I

∑
i

I[et1p1 − µp1 > θi + εip1 ]dε,

or by the linearity of expectation,∫
1

I

∑
i

(I[et2p2 − µp2 > θi + εip2 ]− I[et1p1 − µp1 > θi + εip1 ]) dε < 0.

Because et2p2 − µp2 > et1p1 − µp1 , this implies that∫
1

I

∑
i

(I[et2p2 − µp2 > θi + εip2 ]− I[et2p2 − µp2 > θi + εip1 ]) dε < 0,

or ∫
I[εip1 > εip2 ]dε > 0.5,

or 0.5 > 0.5, a contradiction.

Next, I provide empirical evidence that the beliefs about procedures’ values on the part of

providers correspond to those of administrators. I do this by showing that in jurisdictions in

which a procedure is covered, it’s utilization is increasing in the share of administrators that have

determined it meets Medicare’s coverage standards. By limiting the sample to jurisdictions in

which the procedure is covered, I am eliminating the direct effect of coverage on utilization and

isolating the differences in selection of procedures that are widely covered compared to those that

are not. Figure A8 plots a binned scatterplot of the share of administrators covering a procedure

against its utilization in jurisdictions in which it is covered. We see that procedures that more

administrators believe meet Medicare’s coverage standards are also utilized more by providers.
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Estimating the equation

(12) Ypt = β0 + β1ShareCovpt + εpt

on this same sample, I estimate β1 to be 269.0, meaning that on average a 10 percentage point

increase in the share of MACs covering a procedure is associated with an increase in utilization

of 26.9 uses per million beneficiaries.14

Figure A8: Relationship Between Utilization and the Share of Administrators
Covering a Procedure
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Notes: The figure reports the average monthly utilization per million beneficiaries for each
of nine quantiles of the share of administrators that cover a procedure fully or on a case-
by-case basis. An observation is a procedure-month pair. Sample is limited to jurisdictions
in which the procedure is covered fully or on a case-by-case basis. The red line gives the
predicted values from estimates of Equation 12.

14The standard error of this estimate clustered at the procedure level is 59.92, meaning that the estimate of β1

is statistically different from zero at the 0.1% significance level.

53



E Derivation of Likelihood Function

In this appendix, I derive the likelihood function I use to estimate the model presented in

Section 6.

First, I derive the distribution of agents’ beliefs after receiving a given number of indepen-

dent signals from a common distribution. I assume that the initial belief of physician i about

procedure p, δ0ip, is drawn from the distribution N (δ0p, σδp) and that all n subsequent signals

about procedure p received by provider i, νipk, are drawn from the distribution N (δ∗p, σνp) for

k ∈ {1, . . . , n} independently of the signal received by other physicians. Using Bayes rule,

this means that physician beliefs after receiving n signals {νipk}k∈{1,...,n}, µipn, are distributed

N (µm
pn, σ

m
pn), where

σm
pn =

σδpσνp√
σ2
νp + nσ2

δp

and µm
pn =

(
σm
pn

)2( δ0p
σ2
δp

+
nδ∗p
σ2
νp

)

Given this distribution of beliefs, the share of physicians having adopted procedure p at

time t (after n independent signals to each physician i), αcov,pt, given the coverage status in

their jurisdiction is given by P(µipn − Xip − β1pCaseipt − β2pNoncovipt > 0|Caseipt, Noncovipt).

With the assumption that Xip is distributed standard normally, the distribution of µipn −Xip −
β1pCaseipt − β2pNoncovipt is given by N (µm

diff,n, σ
m
diff,n), where

µm
diff,pn = µm

pn − β1pCaseipt − β2pNoncovipt and σm
diff,pn =

√(
σm
pn

)2
+ 1.

Thus we have that

αcov,pt = 1− Φ

(
−
µm
diff,pn

σm
diff,pn

)
= 1− Φ

−
µm
pn − β1pCaseipt − β2pNoncovipt√(

σm
pn

)2
+ 1

 .

Notice that µm
pn does not depend on the values taken by any of the signals received by any of the

agents and is instead only a function of model parameters.15 This means that I do not need to

address the differences between the conditional and unconditional (on the signals) distributions

of the share of adopting providers and that αcov,pt is (non-stochastically) defined by the model

parameters.

The final complication is that I do not directly observe physicians’ adoption decisions. Rather,

I only observe physicians’ treatment decisions which means number of patients treated using

procedure p by physician i at time t is distributed B(gipt, αcond,ptηp), where gipt is the number of

patients in the consideration set of physician i at time t. This is true because I assume the ηp

15This would not be the case were all agents to receive common or correlated signals.
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is independent of the physician’s adoption decision (i.e. patients for whom the new treatment is

appropriate are not disproportionately likely to be treated by a physician who has adopted the

new procedure). Furthermore, because I assume the number of patients in the consideration set

is also independent of the physician’s adoption decision (i.e. physicians who treat many patients

are not differentially likely to adopt the procedure), the total number of patients treated by

physicians with the same observable characteristics of i (namely the same coverage status) at

time t (denoted ycov,pt) is distributed B(gcov,pt, αcond,ptηp), where gcov,pt denotes the total number

of patients in the consideration set of all such physicians.

Thus, the conditional likelihood function of αcov,pt and ηp given the observed data is

Lcov,pt(αcov,pt, ηp|gcov,pt, ycov,pt) =

(
gcov,pt

ycov,pt

)
(αcov,ptηp)

ycov,pt(1− αcov,ptηp)
gcov,pt−ycov,pt ,

and because αcov,pt is non-stochastic, the likelihood function of model parameters θp is the same:

Lcov,pt(θp|gcov,pt, ycov,pt) = Lcov,pt(αcov,pt, ηp|gcov,pt, ycov,pt).

Combining the likelihood function across coverage regimes and time, we have that the log-

likelihood function for procedure p is

L(θp|Xcov,pt) =
∑

t∈{1,...,T}

∑
cov∈{−1,0,1}

log

((
gcov,pt

ycov,pt

))
+ycov,pt log(αcov,ptηp)+(gcov,pt−ycov,pt) log(1−αcov,ptηp).

55



F Alternative Estimation of ηp

To check my estimates of ηp, I separately estimate the share of patients in the consideration

set treated by physicians who have used the new procedure at least once in the past and will use

it at least once in the future. Because the consideration set of patients is often small and the

share of patients for whom the new procedure is appropriate is often smaller still, I cannot infer

that a physician’s lack of utilization of the new procedure implies that the physician has not

adopted it as the physician may simply see no patients in that month for whom the treatment is

appropriate. For this reason, I limit my estimation to the months strictly between a physician’s

first and last utilization. Under the assumption that providers do not de-adopt and re-adopt the

procedure in this time, this provides an unbiased estimate of ηp.

Panel (a) of Figure A9 reports the distribution of these estimates of ηp while panel (b) reports

the distributions estimated jointly with the other model parameters. Both estimation procedures

indicate that the majority of new procedures are only appropriate for a very small fraction of the

total patients with diagnoses indicating they could potentially benefit from the treatment. The

two estimation procedures generally quite similar, although I find somewhat fewer procedures

with very low values of ηp when estimating them separately from the other model parameters.

That said, the jointly estimated distribution of ηp appears consistent with the 95% confidence

intervals reported for the separately estimated distribution.

Figure A9: Distribution of Estimates for ηp
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(b) Jointly Estimated

Notes: The figure reports the empirical cumulative density function of estimates of ηp. An
observation is a procedure. Dashed lines give the empirical CDF of the upper and lower
bounds of the procedure-wise 95% confidence intervals. Standard errors for each procedure-
level estimate are clustered at the provider level. Panel (a) reports separate estimates of ηp
using the procedure described in Appendix F. Panel (b) reports estimates of ηp estimated
jointly with the other model parameters using the procedure described in Section 6.1.
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