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Abstract

Recent literature provides evidence that income shocks early in life can have long-run consequences on adult

welfare. Rural Brazil frequently suffers from rainfall variations that negatively impact vulnerable households,

who often lack the means for coping with these events. This paper evaluates how early-life rainfall shocks

influence adult health and socioeconomic outcomes in Brazil. We find evidence that several critical periods can

produce long-run consequences. Using rainfall deviations, our two most robust results are that greater rainfall

in utero negatively impacts adult incomes (finding that a one standard deviation increase in rainfall causes adult

incomes to fall by 7-10 percent) and that greater rainfall in the second and third years of life improve adult

health (increasing body mass index by 0.16). However, our results depend crucially on our choices regarding

two features. First, our results differ across two common measures of critical periods, which are used to define

shocks relative to the timing of one’s birth. Second, the way rainfall variation is measured also matters, with use

of an extreme weather indicator suggesting heterogeneous effects by gender, with extreme weather negatively

impacting women’s health (both before and after birth) but positively affecting several men’s outcomes (both

before and after birth). We find some evidence that mortality selection may drive some of these results. This

paper provides further evidence that early-life shocks (from in utero through the third year of life) can cause

long-run consequences, but also suggests that more attention should be paid to the specific measurement and

timing of rainfall shocks. Keywords: health production; education; gender; rainfall; critical periods; Brazil. JEL

codes: I12, J16, O15.
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1 Introduction

Rural populations often rely heavily on rainfall for their incomes while lacking adequate opportunities to minimize

the risk resulting from variable rainfall. In particular, Brazil’s highly unequal land distribution means that many

landless individuals and small farmers remain particularly vulnerable, depending on rainfall for both their own pro-

duction and for labor earnings in the agricultural sector. In this context, rainfall variations can reduce agricultural

earnings and increase the risk of disease, both of which can negatively impact health and welfare in the short-run.

Without insurance, the vagaries of the rainfall and the consequences of regular floods and droughts are a recurring

theme in Brazilian life and the culture of rural areas. In his famous discussion of the semiarid area of Northeastern

Brazil, Euclides da Cunha writes that: “At the height of the droughts they are, positively, a desert, but, when the

droughts are not prolonged to a point where they occasion a painful exodus, man may be seen struggling like the

trees, with the aid of those reserve forces which he has stored up in the days of plenty.” In short, this paper studies

the long-term impact of building up or depleting these reserve forces early in life.

There is growing evidence that these short-run shocks also have long-run consequences, especially for those that

experience significant shocks in utero or early in life (Almond and Currie, 2011). However, there is little consensus

about which periods are critical and which groups are most susceptible to negative shocks (Currie and Vogl, 2013).

For example, in utero exposure to a flu pandemic negatively impacted a range of adult health and socioeconomic

outcomes in the United States (Almond, 2006) and Brazil (Nelson, 2010). Studying the impact of war on individuals,

Akresh et al. [2012] also find that in utero exposure is the most important critical period. In contrast, Maccini

and Yang [2009] find that rainfall during and after the season of birth matters for women (but not men) while

both Glewwe and King [2001] and Alderman et al. [2006] find that the second year is a critical period. Shah and

Steinberg [2017] find that more early-life rainfall improves childhood educational outcomes, with the most important

critical periods including ages 0-2 while ages 3-4 matter but to a lesser degree. Thus, while many individual studies

find evidence that specific critical periods matter (most commonly in utero, the first year, or the second year), the

collective findings fail to reach a consensus about which periods are critical for which groups and in which contexts.

In this paper, we evaluate the impact of exogenous early-life rainfall shocks on adult health and socioeconomic

outcomes in rural Brazil. We evaluate rainfall variations during several potential critical periods around the year

of birth and evaluate how these events impact individuals later in life. Our analysis uses men and women that

were born between 1940 and 1979 in rural areas in both the Southeast and Northeast of Brazil. The Northeast

in particular contains some of Brazil’s deepest and most persistent poverty, which is caused, in part, by variable

rainfall, unequal asset ownership, and inadequate infrastructure. While the Southeast experiences higher rainfall
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levels, its historical rainfall data also exhibits considerable variability. As a result, it provides an opportunity to

evaluate the impact of early-life shocks on very vulnerable populations. In order to evaluate these questions, we

utilize the 1996-1997 Brazilian Living Standards Measurement Survey (LSMS) alongside detailed monthly rainfall

data. The LSMS provides information on adult health and socioeconomic status, which we match to early-life

rainfall data using the location and timing of individual births. As an exogenous shock in areas with few ways to

mitigate the consequences, rainfall provides a plausible measure of variation in early-life welfare.

We present several key results. First, we find that early-life rainfall variations during certain critical periods impact

adult welfare. We find that a one standard deviation increase in rainfall in utero decreases monthly income per

capita by 6.8 to 10.4 percent. After birth, greater rainfall positively affects several adult health outcomes, with a one

standard deviation increase in rainfall during one’s third year of life increasing adult BMI by 0.156 kilograms per

meter squared. Greater rainfall during the second year of life similarly increases BMI and reduces the probability

of reporting poor health by 0.8 percentage points. Thus, we find that potential critical periods range from the in

utero period to the second and third year of life, in contrast with many other papers that find evidence of only

one critical period. Collectively, these results indicate that early-life rainfall variations impact adult outcomes in

economically meaningful ways.

Our second main result, however, is that these findings depend on two important decisions about how early-life

conditions are measured. First, our results differ across two common definitions of critical periods, which determine

the timing of shocks relative to the timing of one’s birth. One approach (method one) defines the birth year as the

month of birth as well as the previous 11 months, thus capturing the period just before conception and in utero,

and evaluates additional 12-month periods around the birth year (a measure used, for example, by Thai and Falaris,

2014; Rocha and Soares, 2015; Aguilar and Vicarelli, 2018). Another approach (method two) defines the birth year

as the season an individual is born in and the following season (Maccini and Yang, 2009).1 As discussed below,

these measures do not align consistently and the choice of measure matters in our data, given that our findings are

not all robust across both of these measures. Second, the way rainfall variations are measured also matters, with

results differing between a measure of rainfall deviations (which is monotonically increasing in rainfall) and a binary

measure of extreme weather (equal to one if rainfall is more than one standard deviation away from the historical

mean in a given region). Among women, extreme weather before birth negatively impacts adult health, lowering

BMI by 0.38 to 0.45 kilograms per meter squared and the probability of reporting good or very good health by 4

percentage points. Among men, extreme weather both before and after birth positively impacts a range of adult

outcomes. We find evidence that mortality selection among males may partially explain these positive effects.
1This definition means that Maccini and Yang’s [2009] finding can be interpreted as evidence that critical periods include time in

utero or the first months after birth.
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Papers evaluating rainfall variations employ a range of measures and the relationship between rainfall and the local

economy will differ across various contexts. In the rainfall literature, some papers use deviations from historical

means (Maccini and Yang, 2009; Björkman-Nyqvist, 2013), which is more appropriate when the impact of rainfall is

monotonic. Other papers use dummy measures capturing extreme rainfall events (Jensen, 2000; Miguel, 2005; Shah

and Steinberg, 2017; Adhvaryu et al., 2019), which might include positive and/or negative rainfall shocks depending

on the impact of these events in a particular context. Others use a combination of approaches (Rocha and Soares,

2015). We find that the relationship between early-life rainfall and long-run health may even differ within the

same sample, with results among men and women being more similar overall when using rainfall deviations but

considerably different when using extreme weather indicators. Overall, our conclusions depend on the choice of how

to measure both critical periods and early-life rainfall. To highlight one example, Maccini and Yang [2009] find

that greater rainfall during and after birth positively impacts women but not men, but our results differ in several

important ways. When we use their definition of critical periods and rainfall variation (method two in Tables 2-4),

we find that greater rainfall during the birth year negatively impacts adult incomes for both women and men (with

the result being more robust for men) and that greater rainfall during the third year increases BMI for both men and

women. However, these results then change whether we use either a different measure of critical periods (method

one in Tables 2-4) or extreme weather shocks (method two in Tables 5-6). While evaluating multiple definitions of

critical periods and measures of rainfall variation complicates our analysis, we find it to be important both in our

data and as a way to help explain the range of empirical evidence in different studies.

These findings have important policy implications, relating to both Brazil in particular and development policy

generally. Growing empirical evidence shows that effective policies early in life can either reduce the impact of

negative shocks or significantly improve adult outcomes (see, for example, Hoyne et al., 2016). Given that many

households are vulnerable to these temporary shocks that have significant long-run costs, there is a need for policies

that better protect households from risk. In particular, these programs are likely to prove to be very cost effective,

since they potentially provide both short- and long-run benefits. In Brazil, programs might include increased access

to insurance, irrigation, and cash transfers to households.

2 Literature Review and Context

Recent literature provides growing evidence that early-life conditions can cause lifelong consequences (Almond and

Currie, 2011). While weather shocks can impact urban areas (Cornwell and Inder, 2015; Baez et al., 2017), we

focus on rural areas, where rainfall shocks can be one of the most significant negative shocks that households



5

face.2 Rainfall variation can impact short-run welfare through several channels, which may then produce long-

run consequences. First, rainfall determines agricultural yields and wages, which influence household incomes and

consumption levels and, in turn, fetal and child health. Early-life child health can persist directly into adulthood

or cause latent long-run effects such as increases in obesity and disease (Barker, 1990). However, the relationship

between rainfall and agricultural yields is complex, with greater rainfall potentially increasing yields in one region

but not another (Galindo, 2009; Skoufias and Vinha, 2013). However, while a slight change in rainfall may increase

or decrease yields, extreme weather should decrease yields, whether due to drought or floods (Bobonis, 2009).

Second, changes in rainfall impact the disease climate, which influences child health with potential long-run impacts.

Again, depending on the specific disease climate, additional rain may increase or decrease health risks. In many

cases, reduced rainfall causes water scarcity, which increases the risk of cholera, typhoid fever, diarrhea, and other

infections diseases (WHO, 2012). In contrast, across 28 African countries Kudamatsu et al. [2016] find that higher

rainfall increases mortality due to malaria. Collectively, given rainfall’s potential positive and negative effects on

child nutrition and health, it is perhaps unsurprising that studies find mixed evidence linking the two. For example,

Skoufias and Vinha [2012] find that positive rainfall shocks negatively impact child health, but that negative rainfall

shocks increase child height in several cases. They argue that this result suggests “that on average in rural Mexico

weather-related illnesses are more prevalent with increases in precipitation” (p. 68). Also in Mexico, Adhvaryu

et al. [2019] find that both negative and positive rainfall shocks reduce incomes. In semiarid parts of Northeastern

Brazil, Rocha and Soares [2015] find that higher rainfall deviations reduce infant mortality and that the link is

likely not driven by agricultural production, but through access to drinking water and infectious disease rates.

Third, negative short-run shocks may produce long-run outcomes contingent on two contrasting effects: a selection

effect (where children with worse health die, thus leaving a healthier population) and scarring (where surviving

children have lower health). Bozzoli et al. [2009] develop a model illustrating how, at higher levels of mortality, the

selection effect dominates the scarring effect and can produce healthier adults in response to early-life shocks. They

find suggestive evidence of this using data from over 40 developing countries, including Brazil. In India, Pathania

[2009] finds that in utero drought exposure decreases height among higher caste women but increases height among

a lower caste, noting that this could be driven by mortality selection among lower castes. We interpret our results

below in light of these findings and potential channels linking early-life shocks to adult welfare.

While there is persuasive evidence that early-life conditions have long-run impacts, there is no consensus about
2While this paper focuses on rainfall shocks, other studies show that many types of early-life shocks have long-term consequences,

including war (Alderman et al., 2006, Akresh et al., 2012, Bundervoet and Fransen, 2018), fasting (Almond and Mazumder, 2011, Karimi
and Basu, 2018), disease (Almond, 2006, Bleakley, 2007, Barreca, 2010, Bleakley, 2010, Cutler et al., 2010, Nelson, 2010, Portrait et al.,
2017), famine (Lindeboom et al., 2010), economic conditions (Van den Berg et al., 2006), and lack of nutrition (Field et al., 2009),
among others.
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which critical periods matter and which individuals are most affected in which contexts. Many studies find that in

utero shocks significantly impact not only birth outcomes (Rocha and Soares, 2015), but also health and education

among both children (Akresh et al., 2012; Thai and Falaris, 2014; Kumar et al., 2016; Aguilar and Vicarelli, 2018;

Rosales-Rueda, 2018; Adhvaryu et al., 2019) and adults (Almond, 2006; Field et al., 2009; Nelson, 2010; Bundervoet

and Fransen, 2018). Dobbing [1976] hypothesized that the final term of pregnancy and the first six months of life

are the most critical periods for brain growth and, as a result, negative shocks at these times may have the largest

long-term impacts on cognitive development. This finding is supported empirically by Maccini and Yang [2009], who

find that adverse rainfall shocks during the year that includes the season of birth and the following season negatively

impact health, education, and labor market outcomes among Indonesian women. In contrast, other findings indicate

that the second and third year of life are most critical for explaining cognitive and health development. Glewwe

and King [2001] find that the first six months are not significant, but the second year of life is significant. Alderman

et al. [2006] find that droughts during the second and third year of life negatively impact childhood health and adult

outcomes. Hoddinott and Kinsey [2001] find that drought exposure during the second year reduces child growth,

but that later exposure does not. Recently, Shah and Steinberg [2017] find that shocks from ages 0-4 negatively

impact child education, but that the most likely critical periods involve ages 0-2.

In addition to differences in the timing of shocks, individuals may be differentially affected by negative shocks. For

example, Maccini and Yang [2009] find that women are affected while men are not. This paper adds to the literature

by testing for various critical periods among both men and women in rural Brazil and comparing distinct ways of

measuring critical periods and early-life rainfall variations.

This is a particularly important topic to analyze in rural Brazil, and we focus on households born in rural areas in

both the Northeast and the Southeast. With extremely unequal land ownership, many farmers rely on rainfall for

their agricultural production and the prevalence of agricultural wage labor means that rainfall will impact incomes

and consumption for many rural households. Even as recently as 2006, irrigation rates among family farms remain

low at 5.26% in the Northeast and 12.12% in the Southeast (Medina et al., 2015). Because in rural Brazil there

is both heavy dependence on rainfall as well as frequent droughts, it is important to better understand the impact

of rainfall variation in this context. During our period of study, droughts occurred in the Northeast, for example,

in 1941–1944, 1951–53, 1958, 1966, 1970, 1976, and 1979–1981 (Marengo et al., 2017). Many of these droughts

have devastating immediate effects on the region. The 1979-1981 drought caused more than a “70% reduction in

production of rice, beans, and cotton, and prices went up by 100%” and then the 1982-1983 drought caused “a

decrease of 80% in livestock” (Marengo et al., 2017). These severe droughts along with regular rainfall variation

are major determinants of rural incomes, consumption, and health, and this paper evaluates the long-run effects of
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this rainfall variation on adult health and socioeconomic outcomes.

3 Data

This paper integrates survey data (including information about adult education, health, and incomes as well as

the timing and location of birth) with detailed historical rainfall data. By combining rich data sets and creating

variables measuring early-life rainfall shocks and adult outcomes, we are able to evaluate the long-run impact of

adverse early-life shocks.

3.1 Rainfall Data

Weather data comes from the Terrestrial Air Temperature and Precipitation: 1900-2014 Gridded Monthly Time

Series, Version 4.01 (Willmott and Matsuura, 2015). This dataset provides monthly average temperature and

monthly total precipitation for 0.5 degree by 0.5 degree squares worldwide, centered on 0.25 and 0.75 degree nodes.

The data is created using spatial interpolation of the weather stations within the square surrounding each node,

with an average of 20 stations. We matched the weather data to municipalities by locating each municipality’s

centroid within the 0.5 degree grid of nodes. The weather data for the four nodes surrounding the municipality are

then averaged, weighting each node by its linear distance from the municipality’s centroid.3 We then construct a

state-level rainfall measure by taking a simple average of the rainfall recorded at each node in the state.45

The rainy and dry seasons are calculated using the same method for both municipal- and state-level weather

data. The rainy season is calculated by finding the block of four-consecutive months with the highest average

rainfall for each state or municipality. The dry season is the eight months that are not a part of the rainy season.
3If the municipality was located at the exact same latitude (longitude) as the nearest nodes, then a weighted average of the nodes

directly to the east and west (north and south) was used. If, as was the case for a select number of municipalities, the centroid was at
the same geographic coordinate as a node, then the data of that node was used exclusively. Because the weather dataset was created
using weather stations, there is only data for nodes above land. This means that for many municipalities, especially those along the
coast, there is not data for all four nodes surrounding the municipality. In the case that data for one or two of the surrounding nodes
was missing, a weighted average of the remaining nodes was used. In the case that three of the surrounding nodes were missing, the
data from the remaining node was used exclusively. There were three municipalities for which all four surrounding nodes were missing
(Tavares and Mostardas in the Southeast and Fernando de Noronha in the Northeast). There were also a number of municipalities for
which the coordinates of their centroid were unknown.

4Many of the nodes are located close to the border between two states, so the data for these nodes relies on weather information
from stations in both states. To avoid contaminating the data for one state with rainfall measured in another, the nodes that draw from
multiple states are weighted according to the proportion of the square surrounding the node that falls into either state. For example, if
a quarter of the square surrounding a node falls into one state and three-quarters of the square fall into the other, then the node will
have a quarter the weight of a node whose square is fully within the state for the former state and three-quarters weight for the latter
state.

5As an unreported robustness check, we construct another state-level rainfall measure by taking a weighted average of the
municipality-level rainfall measure for the municipalities in a state with weights corresponding to the geographic size of the munic-
ipalities and found that most of the results are robust on this dimension.
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With data encompassing such a wide territory with remarkably distinct climates, it is important that different

geographic regions be allowed to have different rainy seasons, which our methodology allows for. On the other

hand, it is challenging to identify a rainy season length that is appropriate for each state or municipality. Within

the Northeast, our data spans all nine states and ranges from wetter Atlantic coastal regions to the drier interior,

encompassing a wide range of climates. Similarly in the Southeast, our data spans all four states and a range of

climates. Using data for all states from 1900-1979, Figure 1a shows that rainfall is highest during a four-month

period from December through March and we use four months as our preferred rainy season length. Figure 1b shows

differences between macroregions, with rainfall peaking in March in the Northeast and December in the Southeast.

For the Northeast, this is consistent with the evidence in Rocha and Soares [2015], who find that rainfall is highest

in March and particularly high from January through April, using a more recent time period. The rainy and dry

seasons that we find using our data are quite similar to those found in Rao et al. [2016] and Rao and Hada [1990],

who calculate three-month rainy seasons. In unreported robustness checks, we also conduct our analysis using two

different measures of rainy season. First, Figure 1a shows that rain is particularly high from January through March.

Second, Figure 1b indicates that there may be a four-month rainy season in the Northeast (February through May)

and a six-month rainy season in the Southeast (October through March). We implement a robustness check using

both a three-month rainy season for the entire sample and separate four- and six-month rainy seasons for states in

the Northeast and Southeast, finding that our main results are largely robust to these changes.

3.2 Rainfall Variables

We use the rainfall data to construct several measures of early-life rainfall, aggregating monthly rainfall data into

yearly information measured relative to an individual’s year and month of birth. We focus on several critical time

periods and compare results using two standard methods for measuring critical periods.

In method one, the before birth period includes the month of birth and the previous 11 months for any given

individual in any location of birth. This provides a measure of rainfall right before conception and in utero, which

are potential critical periods for child development (as noted above and supported by Thai and Falaris, 2014; Rocha

and Soares, 2015; Aguilar and Vicarelli, 2018). We also evaluate the first year of life, which includes one to 12

months after birth. Dobbing [1976] hypothesized that the first six months after birth are an important critical

period for cognitive development. The second year of life (13 to 24 months after birth) provides another potential

critical period for development, as shown by Glewwe and King [2001] and Alderman et al. [2006], and we also

evaluate the third year of life (25 to 36 months after birth).
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In method two, we use the measures utilized by Maccini and Yang [2009], who calculate birth year rainfall as the

season an individual is born in and the following season. We also measure the rainfall one year before birth as well

as one, two, and three years after an individual’s birth year. Maccini and Yang [2009] find evidence that the birth

year is the only critical period that determines adult health, education, and wealth, and only among women.

Figure 2 provides a comparison of both methods and shows that they match up differently based on the timing

of the rainy season relative to the month of birth. Constructed for an individual born in May of 1952, this figure

illustrates method one alongside method two under the scenario where the child is born in the middle of the rainy

season (Season Scenario A) and at the end of the dry season (Season Scenario B). For example, the in utero period

corresponds to before birth in method one or parts of the before birth and birth year periods in method two, and

we interpret these periods as the in utero period to simplify our interpretations below. Both measures are used in

the literature and we present both results for comparison.

Given these two methods of measuring critical periods, we then calculate annual rainfall deviations for each indi-

vidual born in any given municipality or state. We define the deviation in rainfall as the natural logarithm of a

given year’s rainfall minus the natural logarithm of the average annual rainfall in the location of birth, calculated

as a moving average over the 40-year period before one’s year of birth. As a difference of natural logs, the rainfall

deviation measure is interpreted as the percentage deviation from the average annual rainfall in a given location.

This variable is commonly used in rainfall studies and captures deviations from the long-run mean. As shown in

Figures 3a and 3b, there is an upward trend in annual rainfall in the Northeast (but not the Southeast) and the use

of a moving average allows us to compare our early-life rainfall with historical averages relevant in a given location

at a specific time in history.

In addition to rainfall deviations, we evaluate another commonly used rainfall measure: an indicator measuring

whether or not a location experienced extreme weather in a given year. Recognizing that both unusually dry and

wet years can impact agricultural yields, wages, disease rates, and other short-run outcomes, we define extreme

weather to be equal to one if annual rainfall is one standard deviation above or below a given location’s 40-year

moving average. While some papers evaluate indicators of droughts (Rocha and Soares, 2015) and extremely rainy

years (Aguilar and Vicarelli, 2018), our historical data involves both extremely dry and rainy years and we focus

on extreme weather in either direction (Miguel, 2005; Bobonis, 2009; Adhvaryu et al., 2019).

As shown in the summary statistics in Table 1, the average deviation in rainfall is close to zero but the standard

deviation is quite large and extreme weather is a common occurrence, regardless of the level of aggregation of rainfall

or method for calculating critical periods. Given that the standard deviation across our various state-level rainfall
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deviation measures ranges from 18.4% to 19.4%, we present the magnitude of all our estimates based on conditions

when annual rainfall is 19% above the long-run local mean, or roughly a one standard deviation increase for any of

our measures.

3.3 LSMS Data

We analyze adult health and socioeconomic outcomes using the 1996-1997 Brazilian Living Standards Measurement

(LSMS) Survey, which was implemented by the Brazilian Instituto Brasileiro de Geografia e Estatística (IBGE) in

conjunction with the World Bank. Between March 1996 and March 1997, 4,944 households were surveyed in the

Northeast and Southeast macroregions of Brazil. The survey focused on five geographic zones in the Northeast

(including the rural Northeast, the cities of Fortaleza, Recife, and Salvador, and other Northeastern cities) and five

geographic zones in the Southeast (the rural Southeast, the cities of Belo Horizonte, Rio de Janeiro, and São Paulo,

and other Southeastern cities). While the Southeast macroregion is the wealthiest region of Brazil, the Northeast is

historically the poorest macroregion and, at the time of the survey, more than two-thirds of Brazil’s population lived

in these two regions (Monteiro et al., 2001). Within each of these 10 geographic units, 480 households were randomly

selected through a two-stage process: first census tracts from the 1991 Demographic Census were randomly selected

and then households were randomly chosen within each sector. In urban areas, eight households were selected

from each of 60 census tracts and, in rural areas, 16 households were selected from each of 30 census tracts. Each

household was visited twice over a two-week interval in order to collect information on household demographics

(including household members, health, education, etc.), quality of life, and income.

We focus our analysis on individuals born in rural areas because rainfall is expected to impact incomes and con-

sumption most significantly in agricultural contexts. We exclude any individuals born before 1940 but use rainfall

data starting in 1900, which provides us with a 40-year moving historical average for local rainfall before one’s

birth. In order to focus on adults, we also exclude any individuals that are under 18 at the time of the survey (thus

removing individuals born after 1979). Restricting the observations by only including those born in rural areas

leaves 4,077 individuals (out of 10,088 in the overall LSMS).

The LSMS survey asked each individual their state of birth and we use this information for our primary state-level

analysis. While this allows us to maintain 4,077 individuals in our study, it requires us to utilize the state-

level rainfall measure, which decreases the geographic precision of our rainfall data. While we prefer these state-

level results, in a robustness section we also evaluate the more precise municipal rainfall data by focusing on the

municipality of birth for a given individual. However, we are only able to determine the municipality of birth for
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less than half of our sample, since the LSMS asked individuals for their state of birth but then only whether or not

they were born in the same municipality that they resided in at the time of the 1996-7 survey. Thus, for individuals

that live in a different municipality in 1996-7 than they did at birth, we are unable to determine their precise

municipality of birth. When restricting the analysis to individuals born in rural areas for whom we know the exact

municipality of birth, we are left with 1,640 individuals in our sample. Concerns about possible selection bias are

discussed below. Thus, our two strategies require trade-offs between the size of the LSMS data and the geographic

precision of the rainfall data, and we focus on the state-level analysis and present the municipal-level analysis as

an extension of our results.

We first evaluate health outcomes, focusing on anthropometric measures and self-reported health. Height and

weight were collected for all household members at the time of the interviews using reliable microelectronic scales

and portable stadiometers (Monteiro et al., 2001). As outcomes, we evaluate both adult height and body mass

index (weight in kilograms divided by height in meters squared). We also analyze two indicator variables measuring

whether or not self-reported health was excellent or very good (equal to one if so) and whether it was poor (equal to

one if so). Second, we analyze educational outcomes focusing on an indicator for literacy and years of education.6

Third, we evaluate income, focusing on whether or not an individual earns positive income, the inverse hyperbolic

sine of total individual income, and the inverse hyperbolic sine of per capita household income.7 Due to the

existence of several outliers, we drop individuals in the top and bottom 1% of height, BMI, and income levels from

our analysis.

3.4 Summary Statistics

Table 1 provides summary statistics for our state-level analysis, using individuals born in rural areas and our state-

level rainfall measures. The average height and BMI are 161.97 centimeters and 23.94 kg/m-squared, and 31 percent
6Brazil’s educational system has gone through several transformations during the time covered by this data. Before 1971, education

consisted of three levels, including primary or elementary school (four years and known as ensino primário), junior high school (four
years and known as ginasial or médio 1º ciclo), and senior high school (Colegial or Médio 2º ciclo). After 1971, the classification changed
and students progressed through two categories of primary and secondary school. First, primary education (the 1st grau) consisted of
the equivalent of both elementary and junior high school and included grades (“series”) 1 through 8. Second, secondary school (the 2nd
grau) was the equivalent of high school and included grades 9 through 11 (or ensino médio). In 1996, primary education was further
separated into into elementary school (ensino fundamental I or grades 1-4) and junior high school (ensino fundamental II or grades
5-8). Given that our data includes children who attended school both before and after the 1971 change, we scale a continuous “years of
education” variable to match the common usage of grades. Our measure defines the final year of education completed as (with years of
education normalized so that kindergarten is equal to 0): -2 if report no education or nursery school; -1 if report pre-school; 0 if report
kindergarten; 1 through 8 for final year completed of either elementary school or junior high school (before 1971) or primary school (1st
grau after 1971); 9 through 11 for final year completed of senior high school (before 1971) or secondary school (after 1971); 12 through
15 for years completed of college (more than 4 years counted as four); and 16 if masters/doctoral degrees reported.

7The inverse hyperbolic sine function maintains zero values and is interpreted the same way as a log dependent variable. Given the
prevalence of observations of zero income, this transformation is superior to a logarithmic transformation.
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of individuals report being in excellent or very good health while only 4 percent report poor health. In terms of

education, 71 percent of individuals can read and write and there is an average of 4.66 years of education.

This sample is similar to Brazil’s rural population generally. Using the Brazilian Demographic Census from 2000,

Jonasson and Helfand [2010] find an average age of 36.27 and an average education level of 3.57 years in rural areas,

indicating that our sample has slightly above average education levels. Using the Brazilian Agricultural Census

of 2006, Medina et al. [2015] find that 27% of the heads of family farms are illiterate, with the rate increasing to

43% in the Northeast but decreasing to 13% in the Southeast. Education is known to increase agricultural yields

among farmers (see, for example, Foster and Rosenzweig, 2010) and is also one of the most important indicators of

nonfarm labor opportunities and incomes in Brazil (Kageyama and Hoffmann, 2000; Jonasson and Helfand, 2010).

Table 1 also provides summary statistics for our municipal-level analysis, using those individuals born in rural areas

and for whom we know the exact municipality of birth. When restricting the analysis to the municipal level, our

sample is reduced to 1,640 adults born in rural municipalities and residing in their municipality of birth at the time

of the survey.

4 Empirical Strategy

Using the individual-level LSMS data from 1996-7 with the historical rainfall data described above, we are able to

estimate the following regression:

Yijt = ↵+ �Rjt + ⌘Xi + µj + �jTREND + �t + ✏ijt

where Yijt is a specific outcome for individual i born in state j and year t. The coefficient of interest is � and it

estimates the impact of rainfall (Rjt measures either the deviation of rainfall from the long-term mean or an extreme

weather indicator), using the critical periods defined above. We control for parental schooling levels as a proxy

for childhood socioeconomic status (Xi), including a separate series of indicators for whether individual i’s mother

and father completed some or all of elementary school, high school, or beyond (with no schooling excluded). While

rainfall remains plausibly exogenous, these controls allow us to evaluate the impact of early-life rainfall conditional

on rainfall-invariant childhood income levels, proxied for by parental educational attainment that is assumed to be

relatively stable through time. Furthermore, we use these controls because households with less educated heads

may be more vulnerable to shocks (Skoufias, 2007). We include state fixed effects (µj) to control for any potentially

unique but time-invariant characteristics of a given state’s climate or socioeconomic environment. The state-specific
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linear time trend (�jTREND) captures time trends specific to each state, thus providing a flexible control for trends

occurring in distinct areas. Finally, we include general birth year fixed effects (�t) to control for aggregate shocks

that impact all regions as well as season of birth fixed effects. All regressions include robust standard errors that

are clustered by the state of birth. For the results utilizing the municipality of birth rather than the state of birth,

municipalities replace states in the regression.

This regression captures the causal effects of rainfall on adult-life outcomes under plausible assumptions. A primary

concern is the potential existence of omitted variables that might be correlated with our rainfall measures and later

adult-life outcomes. There is not likely to be omitted variable bias given that our flexible controls include location

fixed effects (thus controlling for location-specific and time-invariant trends), location-specific time trends (thus

allowing for a different linear time trend in each location), and year fixed effects (thus controlling for common

nationwide shocks).

Another concern relates to individual survival into adulthood. If children born during rainfall shocks are less likely

to survive, then their absence in the 1997 LSMS survey would cause us to underestimate the deleterious effects of

adverse rainfall events on health and socioeconomic outcomes in adulthood. While mortality selection is a concern

in the literature (Currie and Vogl, 2013), other studies often find that rainfall variation does not impact the size

of cohorts surviving into later years (for example, Maccini and Yang, 2009). We also evaluate the validity of this

concern directly using our data and empirical model to test whether early-life rainfall affects cohort size or the

likelihood of having any individual born in a given cohort in our sample. As Appendix Table A1 shows, we find

some evidence that early-life rainfall has small but detectible effects on survival depending on gender, as discussed

below.

Since the LSMS surveyed households in the Northeast and Southeast regions of Brazil, it is possible that house-

holds would have migrated out of the sample and that this migration may be correlated with rainfall shocks and

socioeconomic variables. Mueller and Osgood [2009] find that rainfall shocks cause some households to migrate,

but that, while the Northeast is the main source of internal migrants in Brazil, most households that leave rural

areas in the Northeast migrate to urban areas either in the Northeast or the Southeast. They also show that most

rural Southeastern households migrate within the Southeast. As a result, while households may migrate from rural

areas as a means of coping with risk, they tend to remain within the range of the LSMS survey, which included

these major urban areas.

Another potential challenge to our identification is that if parents select whether children are born during the wet

or dry season, then children may systematically differ by their season of birth. We find no systematic pattern in
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cohort sizes across birth months and our sample is distributed across seasons as would be expected with no selection

from strategic fertility decision. Furthermore, in unreported tests we find that parental education levels are not

significant predictors of the season of birth.

5 Results

5.1 State-Level Rainfall Analysis

We present our results below, with each table displaying coefficients estimating the impact of rainfall using both

of the methods for defining critical periods described above. We first focus on the impact of early-life shocks as

measured by rainfall deviations, which measure the percentage deviation from the average annual rainfall in a given

location. Second, we explore the impact of early-life shocks using an indicator for extreme weather, equal to one if

annual rainfall is at least one standard deviation above or below the moving historical average in a given location.

Rainfall Deviations

Table 2 evaluates the impact of early-life rainfall deviations on adult health, education, and incomes. Our first

overall finding is that greater rainfall in utero produces several negative impacts. Focusing on the before birth

period, exposure to rainfall 19 percent – or roughly one standard deviation – above average causes the likelihood

of reporting poor health to increase by 0.4 percentage points (method two, column 5) and it causes per capita

household income to fall by 6.8 percent (method one, column 9). Considering rainfall during the birth year period

(method 2), which corresponds to parts of the in utero period, we find that a one standard deviation increase in

rainfall causes per capita household income to fall by 10.4 percent. Evidence of similar results using birth year

in method two and before birth in method one may be due to the importance of trimesters. As seen in Figure

2, these two measures are most likely to overlap during the third trimester and several papers find this trimester

to be critical (Deschênes et al., 2009; Andalón et al., 2016; Hoyne et al., 2016), although the first two trimesters

are also significant (Deschênes et al., 2009; Almond and Mazumder, 2011; Andalón et al., 2016). Additionally, the

likelihood of being literate increases by 1.4 percentage points (method 2, column 5). While many of the outcomes

are not significant, the final column presents the p-value for a joint significance test on each rainfall measure across

all nine outcomes. Other than the third year in method one, there is strong evidence that each rainfall measure has

an impact on adult welfare.
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Our second overall finding is that greater rainfall during the second or third year of life has a small but detectible

positive impact on adult health. An individual who experiences rainfall 19 percent above average during their third

year attains an adult BMI that is 0.156 units higher (method two, column 2). A similar one standard deviation

increase in rainfall during the second year of life increases BMI by 0.174 units and reduces the probability of

reporting poor health by 0.8 percentage points. Given that the mean value for BMI is over 23 and the standard

deviation is over 3, these estimated effects are not huge, but they are also not implausibly large.

Next we disaggregate our results by gender. Table 3 presents our results for women, for whom we find that greater

rainfall before and around birth negatively impacts adult incomes while greater rainfall during the second and third

year causes mixed impacts on health. Specifically, a one standard deviation increase in rainfall before birth reduces

the likelihood of earning positive income by 2.8 percentage points and lowers total individual income by 13.1 percent

(method one, columns 7 and 8). A similar rainfall increase during the birth year decreases per capita household

income by 10.8 percent (method two, column 9) and during the first year decreases the likelihood of earning positive

income by 1.6 percentage points. Focusing on health outcomes, a one standard deviation increase in second year

rainfall raises BMI by 0.196 units but decreases the likelihood of reporting good health by 1.3 percentage points

(method one, columns 2 and 3). During the third year, a similar increase in rainfall may decrease or increase BMI,

with different results using both methods.

Among men, Table 4 presents more consistent and significant evidence that greater rainfall around birth reduces

adult incomes while greater rainfall during the second and third year of life improves health. Greater rainfall during

the first year reduces the likelihood of earning positive income and per capita household income (method one,

columns 7 and 9). This period often corresponds to the birth year in method two, where we see strong evidence

that a one standard deviation increase in birth year rainfall reduces the likelihood of earning positive income (by 2.0

percentage points), total individual income (by 15.8 percent), and per capita household income (by 12.7 percent).

Greater rainfall in the years after birth provides a range of health benefits. Greater rainfall during the first year

increases BMI (method two, column 2) and during the second year it increases the likelihood of reporting good

health (method two, column 3). During the third year, a one standard deviation increase in rainfall increases

BMI by 0.147 units (method two, column 2) and the likelihood of reporting good health by 3.4 percentage points

(method one, column 3). Again, the joint significance tests provide strong evidence that early-life rainfall deviations

significantly impact adult welfare.

Generally, we find evidence that greater rainfall before and during the birth year negatively impacts adult incomes

while greater rainfall during the second and third year of life improves health. In unreported robustness checks, we

show that Tables 2-4 are very robust to two alternative measures of rainy seasons. Furthermore, while height and
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educational outcomes peak for most individuals by age 18, they may continue to evolve even into the mid-20s. In

unreported robustness checks, we find that Tables 3 and 4 are generally robust to focusing only on individuals age

25 or older.

The evidence that higher rainfall deviations have negative effects in utero and positive ones during the second and

third years poses a puzzle. If higher rainfall does increase agricultural yields, these results could be driven by a

simultaneous increase in disease rates that has larger effects in utero and immediately after birth, when children

may be more vulnerable to disease. Alternatively, higher rainfall may increase survival rates in utero among less

healthy babies, resulting in larger cohorts with lower adult outcomes. As shown in Appendix Table A1, we find

little evidence that rainfall deviations before birth and during the birth year influence our cohort size and likelihood

of observing births. Among men, the before birth coefficient is significantly positive (column 6), but it is only

weakly significant. However, the sign of the effect is consistent with the results from Rocha and Soares [2015], who

find that higher in utero rainfall decreases infant mortality. If true, then mortality selection may bias our results

among males downward. Furthermore, for women we find that higher rainfall deviations in the third year after birth

increases the cohort size and likelihood of observing births. While Rose [1999] finds that that survival rates among

girls are more responsive to rainfall, we find some effects among both genders. This suggests that survivorship bias

may influence our findings among each gender.

Extreme Weather

As seen in Figures 3a and 3b, both Northeast and Southeast Brazil experience annual rainfall levels that are both

much higher and much lower than normal, and, as argued above, both extremes can impact agricultural earnings

as well as the disease environment. In this section, we consider this possibility by evaluating an extreme weather

indicator that is equal to one if rainfall is more than one standard deviation away from the moving 40-year historical

average for a given location.

Tables 5 (females) and 6 (males) evaluate the impact of extreme weather during the same combination of critical

periods used above and display a combination of both negative and positive impacts on adult welfare. Focusing on

women in Table 5, extreme weather negatively impacts a range of health outcomes over a range of critical periods.

First, extreme weather before birth reduces BMI by 0.381 to 0.449 (method one and method two) and reduces the

probability of reporting good health by 4 percentage points. Extreme weather during the first year reduces the

likelihood of reporting good health by 3.9 percentage points (method two) and during the third year it reduces

height by 0.656 centimeters (method one). However, we see no evidence that educational outcomes are affected and
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only one significant impact on any measure of income.

Table 6 evaluates the impact of extreme weather on men and, overall, we see evidence of positive impacts across a

range of outcomes across health, education, and incomes. Extreme weather in utero matters in a variety of ways.

Between the two methods, the before birth period is found to increase BMI, years of education, and two measures

of income. Extreme weather during the birth year increases literacy and schooling and increases the likelihood of

reporting good health (method two). While extreme weather during the first year is found to decrease height, it

also decreases the likelihood of reporting poor health (both method one). Extreme weather during the second year

increases the likelihood of reporting good health (method one) and during the third year it increases BMI (method

two) and decreases the likelihood of reporting poor health (method one).

The evidence that extreme weather negatively impacts women but positively impacts men is also surprising. One

potential explanation is that extreme weather causes higher rates of mortality among boys but lower rates of

mortality among girls. We find that extreme weather during the third year reduces our male cohort size and

likelihood of observing male births (Appendix Table A1, method one) while having the opposite effects among

women (Appendix Table A1, method two). Mortality selection could leave a healthier cohort of males that would

bias our estimates upward and might help explain the positive results among males. However, we also find that

extreme weather during the first year increases cohort size and the likelihood of births among males, which may

bias our results downward. Among males, we find that extreme weather during the first year causes several negative

effects, but positive ones during the third year, results consistent with potential mortality selection based on these

results. While intrahousehold gender discrimination may explain why women are more negatively impacted than

men, it does not explain why men might benefit from extreme weather.

5.2 Municipal-Level Rainfall Analysis

The preceding results utilize state-level rainfall measures; we now turn to our municipal-level analysis which, as

discussed above, reduces our sample size but provides more geographically precise rainfall measures. We next

present these results, focusing on robustness checks that evaluate the strength of our evidence. In particular, we

address concerns about migration and calculate bounds on our estimates using various extreme assumptions. Given

the prevalence of rainfall deviations in the literature (see, for example, Maccini and Yang, 2009; Björkman-Nyqvist,

2013; Rocha and Soares, 2015) and to focus our analysis, we evaluate only the rainfall deviations measure.
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Migration

A potential identification concern about our municipal-level analysis relates to migration away from the municipality

of birth. While we have information on the state of birth for all individuals in the sample, we only know the

municipality of birth for those who were still living in their birth municipality at the time of the LSMS survey.

Among respondents born in rural areas, those who have migrated away from their municipalities of birth tend

to have better outcomes than those who have not.8 That migrants tend to have better adult outcomes across a

variety of measures could be somewhat worrying for our identification strategy given that we exclude migrants

from our municipal-level analysis. If the decision to migrate is endogenous, then our estimates of the effects of

early-life rainfall would be inconsistent. Specifically, if lower early-life rainfall is correlated with a lower probability

of migration later in life, then our coefficients would be biased upward and we would be more likely to incorrectly

conclude that rainfall positively affects later-life outcomes.

As evidence that this is not the case, we can examine the differences between migrants and non-migrants in early-life

rainfall as measured at the state level. Because we have data on each respondent’s state of birth, we are able to

determine whether migrants tend to be exposed to more or less rainfall in their early life. Appendix Table A2 reports

results using our empirical strategy discussed above to test for an effect of early-life rainfall on the probability of

an individual migrating away from the municipality of birth. We find some evidence that in utero rainfall increases

the probability of migrating (methods one and two), particularly for women (method one). This, combined with

the evidence that migrants have better later life outcomes, indicates that our estimate can be seen as a lower bound

on the true estimate. We find no evidence of rainfall after birth affecting the the probability of migration using the

full relevant sample (column 1) or limiting the sample to only female (columns 2) or male (columns 3) observations.

Bounds

The main cost to analyzing the municipal-level rainfall is that our sample size falls by more than half, since for

migrants we only know the state of birth and not the municipality of birth. In order to attempt to maintain these

migrants in our municipal-level analysis, we present additional results based on a series of strong assumptions that

provide us with lower and upper bounds on the effects of early-life rainfall deviations. Our bounds are similar to

those employed by Akresh et al. [2016], who evaluate the impact of early-life exposure to conflict in Ethiopia and

Eritrea. Similarly, their data includes the region (but not the municipality) that individuals migrated from and

they make strong assumptions that any children who migrated during the conflict lived at the conflict site itself.
8In unreported results, we find that migrants tend to be heavier and more educated (both in terms of literacy and years of education)

and to earn higher incomes.
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We employ similarly strong assumptions that migrants faced the highest and lowest observed state-level rainfall for

each of the critical periods, thus producing a complete range of assumptions about the rainfall individuals could

have been exposed to. That is, rather than excluding individuals who have migrated from their municipality of

birth, we include them by making various assumptions about the early-life rainfall they may have been exposed to,

and we report only the maximum and minimum estimates obtained for each coefficient. In this way, we provide an

upper and lower bound on the correct estimate when all individuals are included. The assumptions we use to bound

the results are that migrants were born in the municipality within their state of birth that was exposed to either

the highest or the lowest deviation from the mean level of rainfall in each of the years being studied. This means

that using method one, we use a set of eight different assumptions: that migrants were born in the municipality

with the most or least rainfall in the year before their birth, the municipality with the most or least rainfall 1 to 12

months after their birth, and so on. Using method two, we use the corresponding set of ten different assumptions.

Results

Tables 7, 8a, and 8b present our municipal-level results using only individuals who live in the their municipality

of birth (Table 7) and then we add our bounds to evaluate health and education outcomes (8a) and incomes (8b).

Without including migrants, we find evidence that greater in utero rainfall is beneficial, in contrast with our state-

level results. Greater rainfall reduces the likelihood of reporting poor health for rainfall during the before birth

period (method one) and increases per capita household income for the birth year period (method two). We find

some positive and some negative impacts of rainfall during the second and third year. Overall, these results suffer

from larger standard errors and several of these results are only weakly significant.

When including migrants, we don’t find any cases where both the lower and upper bounds are significant, but we do

find cases where even under extreme assumptions about migrants the sign of the estimate is unaffected. Focusing

on in utero rainfall, the lower bounds suggest that higher before birth rainfall could affect health negatively (height

and BMI in method one) or positively (probability of reporting poor health in method one). A similarly mixed

result links before birth rainfall and per capita household income. We see some evidence that greater birth year

rainfall is beneficial, increasing height and individual income (method two). However, while both bounds have the

same sign, the fact that they are not both statistically significant prevents us from confirming any of these effects.

Similarly for second and third year rainfall, we see several positive impacts on health and incomes (alongside a few

negative ones), but the bounds do not allow us to confirm the effects as positive or negative. Because migrants

comprise over half of our sample in Tables 8a and 8b, we may find few significant results due to the measurement

error introduced by the strong assumptions driving our bounds analysis.
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In unreported results, we also disaggregate these effects by gender, but with the smaller sample sizes we again suffer

from large standard errors and the lower and upper bounds do not allow us to confirm effects as positive or negative

at both extremes.

6 Conclusion

This paper evaluates how early-life conditions (measured by rainfall variations in rural areas) influence adult welfare,

focusing on health, education, and income. Given the limited ability for many rural households to cope with changes

in rainfall, these measures represent shocks to agricultural incomes, health, and short-term welfare. With recent

literature suggesting that shocks during critical periods can have long-run consequences but no consensus about

which periods are in fact critical, this paper evaluates several potential critical periods focusing on particularly

vulnerable populations in high-risk rural areas of Brazil.

Our primary finding is that early-life conditions significantly impact adult welfare. Using our primary results using

rainfall deviations, we find that a one standard deviation increase in rainfall in utero decreases per capita household

incomes as adults by 6.8 (using the before birth period from method one) to 10.4 percent (using the birth year

period from method two). In contrast, greater rainfall in the years after one’s birth is found to improve adult

health. Greater rainfall during the second year increases BMI and decreases the likelihood of reporting poor health

and a one standard deviation increase in rainfall during the third year increases BMI by 0.156 kilograms per meter

squared.

Second, our results depend on how we measure critical periods and rainfall variation. We compare two common

ways of measuring critical periods relative to the timing of one’s birth, noting that they do not consistently overlap

and our results are not generally consistent across both measures. We also compare two ways of measuring rainfall

variations – using both monotonically increasing rainfall deviations and an extreme weather indicator – and find

that the importance of early-life shocks depends on how rainfall is measured. When we evaluate the effects of

extreme weather, we find that shocks negatively impact women’s adult health, particularly when the shocks occur

in utero or during the first and third years of life. Among men, extreme weather shocks in utero increase adult

incomes and education while shocks during the first, second, and third years of life improve several health outcomes.

Among men, mortality selection may help explain the positive impact of extreme weather shocks as well as the

negative impact of greater in utero rainfall deviations.

Collectively, our findings support a range of studies, which individually tend to find the existence of single critical

periods but collectively present evidence across a range of critical periods. A notable exception is Shah and Steinberg
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[2017], who find that ages 0-2 are the most critical periods but that ages 3-4 also influence later-life outcomes. As

with Almond [2006] and Akresh et al. [2012] (for a flu pandemic and war, respectively), we find that in utero shocks

matter. Similarly, Maccini and Yang [2009] find that rainfall during the birth year (a measure evaluated in our

method two that can correspond to parts of the in utero period and the first year after birth) impacts adult welfare

among women but not men. When using rainfall deviations, we find that greater in utero rainfall decreases adult

incomes across several measures. When using extreme weather shocks, we find that in utero shocks negatively

impact women’s health but increase men’s health, education, and incomes. As with Glewwe and King [2001] and

Alderman et al. [2006], we find that shocks during the second year have important long-run effects and we also find

that the third year matters as well. Across all adults in our sample, a one standard deviation increase in second or

third year rainfall increases adult BMI by 0.174 and 0.156 kilograms per meter squared. Extreme weather during

the third year decreases height by 0.66 cm among women, but extreme weather during the second and third year

improves BMI and self-reported health among men.

Overall, these results support the growing evidence that early-life conditions have long-run consequences and provide

further support for policies that help alleviate the negative consequences of short-run shocks. Further research

will help to verify which time periods may be critical under which conditions. While many innovative programs

have been introduced to these regions since the time period being analyzed (including individuals born from 1940

through 1979), our results have important implications for these policies. The findings suggest that social programs

– including insurance, cash transfers, public health investments, and more – likely have even larger benefits than

many short-run evaluations are able to calculate. By helping households maintain higher levels of consumption

and health during short-run shocks, households will benefit from these programs throughout their lifetimes. This

suggests that many of these programs should be expanded and their impacts could be amplified by focusing more

explicitly on helping households protect themselves against negative shocks.



Variables Mean Median St.	Dev. N Mean Median St.	Dev. N
Individual	Variables

Height	(centimeters) 161.97 162.00 8.58 3,680 162.41 162.20 8.62 1,503
BMI	(kg/m	squared) 23.94 23.31 3.84 3,670 23.32 22.59 3.64 1,498
Self-reported	health	status	excellent	or	very	good	(=1) 0.31 0 0.46 4,063 0.30 0 0.46 1,629
Self-reported	health	status	poor	(=1) 0.04 0 0.20 4,063 0.04 0 0.20 1,629
Literate	(=1	if	can	read	and	write) 0.71 1 0.45 4,077 0.66 1 0.47 1,640
Years	of	education 4.66 4 3.45 3,267 4.06 4 3.17 1,268
Positive	total	income	(=1	if	positive) 0.51 1 0.50 4,077 0.43 0 0.49 1,640
Total	individual	income 179.40 9.40 436.78 4,052 141.71 0.00 391.28 1,637
Total	individual	income	(IHS) 2.90 2.94 3.01 4,052 2.39 0.00 2.91 1,637
Per	capita	household	income	(IHS) 5.28 5.99 2.61 4,054 4.73 5.57 2.76 1,639

	
Rainfall	Deviation	Variables	-	Method	#1

Before	birth -0.013 -0.005 0.194 4,008 -0.047 -0.019 0.287 1,609
First	year -0.014 -0.009 0.189 4,077 -0.043 -0.019 0.282 1,633
Second	year -0.011 -0.005 0.192 4,077 -0.042 -0.016 0.285 1,633
Third	year -0.009 -0.002 0.184 4,077 -0.038 -0.022 0.286 1,633

Extreme	Weather	Indicator	Variables	-	Method	#1

Before	birth 0.24 0 0.43 4,077 0.33 0 0.47 1,640
First	year 0.23 0 0.42 4,077 0.32 0 0.47 1,640
Second	year 0.24 0 0.43 4,077 0.33 0 0.47 1,640
Third	year 0.23 0 0.42 4,077 0.31 0 0.46 1,640

Rainfall	Deviation	Variables	-	Method	#2

Before	birth -0.012 0.001 0.189 4,077 0.002 0.008 0.239 1,633
Birth	year -0.012 -0.004 0.189 4,077 0.006 0.015 0.228 1,633
First	year -0.013 0.002 0.187 4,077 -0.011 -0.001 0.228 1,633
Second	year -0.011 0.003 0.188 4,077 -0.005 0.001 0.240 1,633
Third	year -0.011 0.003 0.185 4,077 -0.016 -0.009 0.237 1,633

Extreme	Weather	Indicator	Variables	-	Method	#2

Before	birth 0.23 0 0.42 4,077 0.31 0 0.46 1,640
Birth	year 0.23 0 0.42 4,077 0.32 0 0.47 1,640
First	year 0.23 0 0.42 4,077 0.30 0 0.46 1,640
Second	year 0.24 0 0.43 4,077 0.32 0 0.47 1,640
Third	year 0.23 0 0.42 4,077 0.32 0 0.47 1,640
Notes:	Sample	restricted	to	individuals	born	in	rural	areas	between	1940	and	1979.	Municipal-level	sample	further	restricted	to	individuals	whom	we	can	determine	the	municipality	of	
birth.	Continuous	outcomes	(excluding	years	of	education)	in	the	bottom	and	top	1%	are	dropped	as	outliers.		

State-Level	Analysis Municipal-Level	Analysis

Table	1	-	Summary	Statistics



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Rainfall	deviation	measures	(Method	1):

Before	birth -0.313 -0.475 -0.046 0.010 -0.003 -0.070 -0.081 -0.399 -0.357*
[0.830] [0.383] [0.042] [0.014] [0.061] [0.480] [0.049] [0.273] [0.197] 0.000

First	year -1.152 0.335 0.013 -0.007 0.044 0.124 -0.066 -0.348 -0.254
[0.884] [0.412] [0.053] [0.021] [0.030] [0.221] [0.044] [0.266] [0.143] 0.000

Second	year -0.705 0.916* 0.019 -0.042* -0.049 -0.364 -0.044 -0.296 0.028
[0.940] [0.438] [0.044] [0.022] [0.034] [0.275] [0.063] [0.388] [0.247] 0.000

Third	year 0.138 -0.272 0.055 0.027 -0.007 -0.039 -0.036 -0.104 0.144
[0.515] [0.344] [0.048] [0.018] [0.030] [0.330] [0.061] [0.293] [0.217] 0.177

Constant 157.033*** 26.602*** -0.037 -0.043** 0.548** -0.473 0.291 1.766 6.072***
[3.982] [2.407] [0.110] [0.017] [0.220] [0.613] [0.235] [1.365] [0.785]

Observations 3,596 3,582 3,968 3,968 3,981 3,202 3,981 3,956 3,960
R-squared 0.094 0.105 0.100 0.058 0.231 0.205 0.072 0.075 0.118
Log	likelihood -12646 -9709 -2382 999.8 -1963 -8138 -2739 -9823 -9169
Rainfall	deviation	measures	(Method	2):

Before	birth 0.276 0.064 0.016 0.023** 0.075* -0.002 -0.037 -0.100 0.057
[0.562] [0.324] [0.050] [0.008] [0.039] [0.449] [0.034] [0.222] [0.182] 0.000

Birth	year 0.064 0.424 -0.008 0.004 -0.045 -0.038 -0.051 -0.361 -0.549***
[0.736] [0.292] [0.030] [0.018] [0.039] [0.298] [0.052] [0.309] [0.139] 0.000

First	year 0.024 0.421 0.032 -0.030 -0.011 -0.371 -0.003 0.010 0.199
[0.683] [0.502] [0.049] [0.018] [0.038] [0.284] [0.037] [0.224] [0.188] 0.000

Second	year -1.011 0.215 0.027 0.003 -0.001 0.075 -0.084 -0.495 -0.254
[0.842] [0.437] [0.048] [0.018] [0.044] [0.375] [0.073] [0.379] [0.310] 0.037

Third	year 0.813 0.819** 0.025 0.004 -0.066* -0.412 -0.014 -0.165 0.050
[0.960] [0.290] [0.028] [0.016] [0.037] [0.404] [0.026] [0.151] [0.202] 0.000

Constant 158.494*** 26.053*** -0.017 0.053 0.463*** 0.419 0.117* 0.575* 5.358***
[0.829] [0.651] [0.024] [0.043] [0.044] [0.605] [0.055] [0.302] [0.309]

Observations 3,656 3,645 4,036 4,036 4,050 3,242 4,050 4,025 4,027
R-squared 0.095 0.104 0.102 0.056 0.234 0.210 0.073 0.077 0.119
Log	likelihood -12861 -9877 -2409 960.6 -2003 -8239 -2785 -9988 -9322
Notes:		***Significant	at	the	1	percent	level.		**Significant	at	the	5	percent	level.		*Significant	at	the	10	percent	level.		All	regressions	include	birth	year	fixed	effects,	season	of	birth	fixed	effects,	state	fixed	effects,	state-specific	linear	trends,	and	
controls	for	parental	education.	Continuous	outcomes	(excluding	years	of	education)	in	the	bottom	and	top	1%	are	dropped	as	outliers.	Robust	standard	errors	are	clustered	at	the	state	level	and	reported	in	parentheses.	The	final	column	
presents	the	p-value	for	a	joint	significance	test	on	each	rainfall	measure	across	all	nine	outcomes.	

Joint	
Significance	

Test

Positive	total	
income	(=1)

Total	Income	
(IHS)

Per	Capita	
Household	
Income	(IHS)

Table	2	-	Effect	of	Early-Life	Rainfall	Deviations	on	Adult	Health,	Education,	and	Incomes

Self-reported	
health	poor	

(=1)

Years	of	
Education

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Literate	(=1)



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Rainfall	deviation	measures	(Method	1):

Before	birth -0.963 -0.238 -0.120* 0.029 -0.048 -0.276 -0.147** -0.687* -0.334
[0.818] [0.620] [0.056] [0.020] [0.060] [0.405] [0.057] [0.350] [0.284] 0.018

First	year -0.677 0.664 0.031 -0.014 0.107** 0.566 -0.020 -0.027 -0.271
[1.021] [0.999] [0.064] [0.020] [0.037] [0.347] [0.068] [0.397] [0.272] 0.000

Second	year -0.910 1.030* -0.066* -0.034 -0.050 -0.065 -0.050 -0.253 0.434
[0.953] [0.532] [0.033] [0.027] [0.034] [0.510] [0.058] [0.331] [0.320] 0.000

Third	year 0.224 -0.808* -0.049 0.025 -0.057** -0.725 -0.044 -0.171 0.187
[0.887] [0.413] [0.063] [0.024] [0.023] [0.419] [0.076] [0.347] [0.259] 0.000

Constant 155.019*** 27.979*** -0.222*** 0.066*** 0.617** 1.222** 0.205 1.477 5.897***
[4.242] [2.833] [0.070] [0.021] [0.220] [0.494] [0.226] [1.372] [1.104]

Observations 1,919 1,905 2,048 2,048 2,053 1,654 2,053 2,050 2,041
R-squared 0.155 0.122 0.119 0.082 0.237 0.212 0.073 0.077 0.146
Log	likelihood -6132 -5303 -1146 449.4 -957.2 -4210 -1301 -4878 -4722
Rainfall	deviation	measures	(Method	2):

Before	birth 0.120 0.244 0.056 0.026 0.087 -0.451 -0.055 -0.119 0.141
[0.627] [0.473] [0.048] [0.018] [0.052] [0.427] [0.036] [0.259] [0.264] 0.066

Birth	year -0.676 0.778 -0.062 0.009 -0.020 0.007 -0.021 -0.050 -0.571**
[0.691] [0.746] [0.047] [0.027] [0.060] [0.430] [0.059] [0.300] [0.233] 0.000

First	year -1.584 0.202 -0.023 -0.013 -0.044 -0.053 -0.082** -0.363 0.455
[1.080] [0.729] [0.063] [0.028] [0.044] [0.547] [0.037] [0.207] [0.345] 0.000

Second	year 0.486 0.166 -0.055 -0.010 0.013 -0.117 0.008 0.132 -0.031
[0.860] [0.724] [0.056] [0.023] [0.052] [0.731] [0.060] [0.294] [0.434] 0.760

Third	year 1.419 1.020** -0.005 0.007 -0.068 -0.366 -0.049 -0.499* 0.004
[1.040] [0.422] [0.051] [0.023] [0.050] [0.281] [0.044] [0.235] [0.337] 0.000

Constant 152.896*** 27.509*** -0.146*** 0.142*** 0.395*** 1.285* -0.157*** -0.841*** 5.211***
[0.974] [0.934] [0.040] [0.044] [0.063] [0.652] [0.042] [0.211] [0.366]

Observations 1,950 1,939 2,086 2,086 2,091 1,675 2,091 2,088 2,078
R-squared 0.157 0.122 0.120 0.077 0.243 0.220 0.073 0.078 0.148
Log	likelihood -6231 -5393 -1158 436.5 -979.1 -4264 -1320 -4960 -4811

Table	3	-	Effect	of	Early-Life	Rainfall	Deviations	on	Adult		Health,	Education,	and	Incomes	-	Females

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Self-reported	
health	poor	

(=1)

Literate	(=1) Years	of	
Education

Joint	
Significance	

Test

Positive	
Individual	
Income	(=1)

Total	
Individual	

Income	(IHS)

Per	Capita	
Household	
Income	(IHS)

Notes:		Please	see	the	notes	for	Table	2.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Rainfall	deviation	measures	(Method	1):

Before	birth -1.108 -0.573 0.007 -0.018 0.070 0.464 -0.068 -0.423 -0.343
[0.962] [0.364] [0.065] [0.023] [0.079] [0.562] [0.048] [0.388] [0.381] 0.000

First	year -1.067 -0.174 0.020 -0.010 -0.014 -0.284 -0.090* -0.544 -0.315*
[1.207] [0.490] [0.061] [0.030] [0.063] [0.346] [0.043] [0.343] [0.176] 0.000

Second	year -1.205 0.645 0.098 -0.052 -0.040 -0.684 -0.067 -0.546 -0.395
[0.933] [0.475] [0.095] [0.033] [0.035] [0.431] [0.097] [0.612] [0.383] 0.000

Third	year -0.432 0.520 0.177** 0.023 0.041 0.789** -0.069 -0.297 0.054
[0.861] [0.569] [0.081] [0.029] [0.059] [0.331] [0.072] [0.379] [0.253] 0.000

Constant 154.557*** 24.037*** 0.478 -0.159*** 0.099*** -4.333*** 0.263 0.895 6.407***
[3.799] [2.378] [0.302] [0.023] [0.029] [0.377] [0.339] [1.578] [1.376]

Observations 1,677 1,677 1,920 1,920 1,928 1,548 1,928 1,906 1,919
R-squared 0.138 0.158 0.111 0.067 0.268 0.245 0.137 0.140 0.122
Log	likelihood -5501 -4283 -1191 597.8 -943.3 -3871 -1095 -4592 -4409
Rainfall	deviation	measures	(Method	2):

Before	birth -0.613 -0.108 -0.027 0.016 0.056 0.543 -0.024 -0.133 0.000
[0.612] [0.607] [0.074] [0.019] [0.103] [0.827] [0.051] [0.372] [0.335] 0.016

Birth	year 0.283 0.059 0.051* -0.011 -0.042 0.137 -0.106** -0.830*** -0.667**
[1.180] [0.411] [0.026] [0.021] [0.044] [0.302] [0.043] [0.230] [0.247] 0.000

First	year -0.956 0.674* 0.065 -0.051 0.042 -0.619 0.001 -0.105 -0.001
[1.144] [0.351] [0.103] [0.037] [0.044] [0.403] [0.074] [0.481] [0.452] 0.000

Second	year -0.052 0.059 0.138** 0.004 -0.024 0.255 -0.092 -0.639 -0.534*
[0.761] [0.520] [0.053] [0.018] [0.043] [0.281] [0.081] [0.441] [0.288] 0.000

Third	year 1.032 0.776* 0.058 0.002 -0.066 -0.577 0.049 0.362 0.175
[1.264] [0.365] [0.058] [0.020] [0.073] [0.757] [0.046] [0.380] [0.404] 0.006

Constant 161.877*** 24.598*** 0.162** -0.026 0.559*** -0.421 0.432*** 2.165*** 5.690***
[1.252] [0.628] [0.063] [0.061] [0.065] [0.897] [0.087] [0.544] [0.409]

Observations 1,706 1,706 1,950 1,950 1,959 1,567 1,959 1,937 1,949
R-squared 0.138 0.155 0.110 0.069 0.264 0.245 0.136 0.140 0.123
Log	likelihood -5601 -4359 -1207 569.2 -967.1 -3921 -1114 -4665 -4471

Table	4	-	Effect	of	Early-Life	Rainfall	Deviations	on	Adult		Health,	Education,	and	Incomes	-	Males

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Self-reported	
health	poor	

(=1)

Years	of	
Education

Literate	(=1) Joint	
Significance	

Test

Positive	
Individual	
Income	(=1)

Total	
Individual	

Income	(IHS)

Per	Capita	
Household	
Income	(IHS)

Notes:		Please	see	the	notes	for	Table	2.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Extreme	weather	measures	(Method	1):

Before	birth 0.128 -0.381** -0.040** 0.005 -0.002 -0.019 0.010 0.010 -0.043
[0.227] [0.172] [0.015] [0.012] [0.021] [0.135] [0.024] [0.146] [0.106] 0.000

First	year 0.156 -0.308 -0.024 -0.003 0.017 0.057 -0.039 -0.205 0.034
[0.382] [0.215] [0.030] [0.013] [0.024] [0.130] [0.030] [0.174] [0.160] 0.002

Second	year 0.220 -0.129 -0.022 0.010 -0.005 0.029 0.041 0.220 0.112
[0.374] [0.201] [0.020] [0.006] [0.011] [0.174] [0.028] [0.151] [0.072] 0.000

Third	year -0.656** -0.074 0.009 -0.002 -0.026 -0.061 0.009 0.041 -0.164
[0.250] [0.200] [0.024] [0.011] [0.026] [0.267] [0.020] [0.130] [0.110] 0.000

Constant 152.762*** 27.827*** -0.082** 0.139*** 0.421*** 1.344* -0.159** -0.790*** 5.250***
[0.888] [0.840] [0.031] [0.039] [0.071] [0.695] [0.053] [0.258] [0.372]

Observations 1,950 1,939 2,086 2,086 2,091 1,675 2,091 2,088 2,078
R-squared 0.156 0.122 0.121 0.076 0.241 0.219 0.074 0.078 0.147
Log	likelihood -6233 -5394 -1158 436.2 -980.9 -4264 -1319 -4959 -4812
Extreme	weather	measures	(Method	2):

Before	birth 0.114 -0.449* -0.009 -0.007 0.009 -0.004 0.004 0.064 -0.017
[0.231] [0.219] [0.020] [0.008] [0.025] [0.230] [0.021] [0.132] [0.137] 0.003

Birth	year -0.153 0.150 0.021 0.014 0.003 0.048 -0.049* -0.246 -0.126
[0.293] [0.197] [0.027] [0.009] [0.018] [0.158] [0.027] [0.156] [0.094] 0.000

First	year -0.152 -0.069 -0.039** 0.001 -0.007 0.237 0.005 0.002 -0.139
[0.440] [0.206] [0.017] [0.010] [0.026] [0.152] [0.032] [0.183] [0.128] 0.000

Second	year -0.150 -0.168 0.031 0.020 0.007 0.013 -0.003 0.029 0.069
[0.369] [0.238] [0.023] [0.013] [0.021] [0.171] [0.024] [0.155] [0.144] 0.000

Third	year -0.070 0.272 0.019 0.002 -0.003 -0.019 0.027 0.180 0.068
[0.372] [0.198] [0.017] [0.015] [0.028] [0.139] [0.019] [0.105] [0.112] 0.000

Constant 152.927*** 27.410*** -0.144*** 0.129** 0.409*** 1.247* -0.140** -0.782*** 5.218***
[0.905] [0.946] [0.044] [0.047] [0.062] [0.582] [0.049] [0.233] [0.409]

Observations 1,950 1,939 2,086 2,086 2,091 1,675 2,091 2,088 2,078
R-squared 0.154 0.123 0.121 0.078 0.241 0.220 0.074 0.079 0.147
Log	likelihood -6235 -5393 -1157 438.2 -981.7 -4264 -1319 -4959 -4812
Notes:		Please	see	the	notes	for	Table	2.

Joint	
Significance	

Test

Table	5	-	Effect	of	Early-Life	Extreme	Weather	on	Adult		Health,	Education,	and	Incomes	-	Females

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Self-reported	
health	poor	

(=1)

Literate	(=1) Years	of	
Education

Positive	
Individual	
Income	(=1)

Total	
Individual	

Income	(IHS)

Per	Capita	
Household	
Income	(IHS)



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Extreme	weather	measures	(Method	1):

Before	birth -0.005 -0.162 0.009 0.006 -0.001 0.222 0.046* 0.351** 0.177
[0.297] [0.171] [0.024] [0.007] [0.018] [0.165] [0.023] [0.147] [0.126] 0.059

First	year -0.652** 0.016 -0.003 -0.014** -0.001 -0.058 -0.014 -0.014 -0.121
[0.257] [0.150] [0.030] [0.006] [0.017] [0.230] [0.018] [0.149] [0.165] 0.000

Second	year -0.123 -0.264 0.045** -0.006 -0.025 -0.128 0.006 -0.063 -0.141
[0.463] [0.221] [0.018] [0.010] [0.025] [0.154] [0.017] [0.076] [0.119] 0.000

Third	year -0.379 -0.237 0.012 -0.017* -0.025 0.187 0.006 -0.018 -0.170
[0.390] [0.194] [0.018] [0.009] [0.022] [0.163] [0.035] [0.197] [0.117] 0.017

Constant 161.816*** 24.823*** 0.085 -0.020 0.597*** -0.461 0.380*** 1.863*** 5.671***
[1.374] [0.603] [0.059] [0.057] [0.079] [0.716] [0.070] [0.444] [0.379]

Observations 1,706 1,706 1,950 1,950 1,959 1,567 1,959 1,937 1,949
R-squared 0.139 0.155 0.108 0.069 0.264 0.244 0.135 0.139 0.122
Log	likelihood -5601 -4359 -1209 569.5 -967.6 -3922 -1114 -4666 -4471
Extreme	weather	measures	(Method	2):

Before	birth -0.005 0.279* 0.001 0.007 0.015 0.324*** 0.013 0.044 0.074
[0.455] [0.130] [0.019] [0.014] [0.013] [0.105] [0.022] [0.166] [0.173] 0.000

Birth	year 0.088 0.279 0.060** -0.014 0.039** 0.333* 0.010 0.091 0.132
[0.394] [0.158] [0.020] [0.010] [0.018] [0.185] [0.020] [0.114] [0.167] 0.000

First	year -0.347 -0.036 0.027 -0.008 -0.013 0.026 -0.039 -0.271 -0.170
[0.337] [0.171] [0.030] [0.007] [0.014] [0.239] [0.028] [0.189] [0.140] 0.001

Second	year 0.428 -0.073 0.011 0.004 -0.011 0.202 -0.030 -0.237 -0.094
[0.375] [0.157] [0.032] [0.012] [0.028] [0.147] [0.020] [0.160] [0.100] 0.000

Third	year 0.258 0.652*** -0.004 0.007 -0.015 -0.137 -0.025 -0.191 -0.051
[0.405] [0.149] [0.029] [0.012] [0.021] [0.145] [0.022] [0.139] [0.101] 0.000

Constant 161.513*** 24.429*** 0.089* -0.019 0.573*** -0.287 0.461*** 2.382*** 5.796***
[1.145] [0.648] [0.045] [0.060] [0.081] [0.753] [0.075] [0.453] [0.418]

Observations 1,706 1,706 1,950 1,950 1,959 1,567 1,959 1,937 1,949
R-squared 0.139 0.161 0.109 0.069 0.265 0.246 0.136 0.140 0.122
Log	likelihood -5601 -4353 -1208 568.7 -966.5 -3920 -1114 -4665 -4472
Notes:		Please	see	the	notes	for	Table	2.

Joint	
Significance	

Test

Table	6	-	Effect	of	Early-Life	Extreme	Weather	on	Adult		Health,	Education,	and	Incomes	-	Males

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Self-reported	
health	poor	

(=1)

Literate	(=1) Years	of	
Education

Positive	
Individual	
Income	(=1)

Total	
Individual	

Income	(IHS)

Per	Capita	
Household	
Income	(IHS)



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Rainfall	deviation	measures	(Method	1):

Before	birth -0.803 -0.747 0.078 -0.058* -0.028 0.375 -0.044 -0.306 -0.266
[1.322] [0.462] [0.069] [0.033] [0.056] [0.354] [0.053] [0.341] [0.324] 0.005

First	year -0.200 -0.698 0.012 -0.031 -0.021 -0.248 -0.040 -0.115 -0.141
[1.252] [0.481] [0.056] [0.025] [0.055] [0.481] [0.055] [0.318] [0.390] 0.565

Second	year 1.022 -0.528 0.066 -0.048 0.092* 0.214 0.060 0.480 0.155
[1.397] [0.445] [0.056] [0.040] [0.051] [0.451] [0.058] [0.342] [0.362] 0.016

Third	year -0.583 0.472 0.051 -0.026 -0.048 -1.320*** -0.002 0.079 0.021
[1.230] [0.491] [0.062] [0.026] [0.047] [0.418] [0.059] [0.318] [0.324] 0.004

Constant 177.470*** 26.964*** -0.132 0.057 0.823** -10.808*** -0.756*** -0.381 6.920***
[10.722] [3.987] [0.249] [0.113] [0.365] [3.263] [0.214] [1.798] [2.358]

Observations 1,455 1,449 1,577 1,577 1,587 1,231 1,587 1,584 1,586
R-squared 0.272 0.300 0.348 0.330 0.457 0.551 0.275 0.300 0.452
Log	likelihood -4960 -3676 -674.1 625.4 -578.3 -2670 -880.5 -3663 -3392
Rainfall	deviation	measures	(Method	2):

Before	birth -0.270 -0.529 -0.048 -0.003 -0.039 -0.397 0.040 0.103 0.607
[1.471] [0.437] [0.055] [0.031] [0.049] [0.419] [0.068] [0.399] [0.374] 0.182

Birth	year 1.748* -0.228 -0.006 -0.023 0.042 0.354 0.005 0.261 -0.078
[1.045] [0.547] [0.058] [0.024] [0.059] [0.417] [0.076] [0.405] [0.360] 0.305

First	year -0.624 -0.706 -0.017 -0.048 0.040 0.120 0.028 0.004 -0.328
[1.238] [0.614] [0.057] [0.033] [0.053] [0.392] [0.071] [0.406] [0.265] 0.197

Second	year 0.559 -0.069 0.006 -0.002 0.038 0.788 -0.012 -0.140 0.416
[1.401] [0.513] [0.066] [0.032] [0.059] [0.508] [0.067] [0.377] [0.358] 0.553

Third	year -1.159 0.737 0.096** 0.050* -0.063 -0.084 -0.058 -0.166 -0.286
[1.307] [0.528] [0.047] [0.028] [0.057] [0.400] [0.060] [0.336] [0.316] 0.007

Constant 177.533*** 22.836*** -0.004 0.002 0.716*** -8.828** -0.428** 0.662 7.399***
[5.300] [1.764] [0.224] [0.084] [0.172] [3.507] [0.210] [1.284] [1.238]

Observations 1,476 1,471 1,600 1,600 1,611 1,242 1,611 1,608 1,610
R-squared 0.280 0.297 0.347 0.338 0.463 0.551 0.270 0.293 0.457
Log	likelihood -5027 -3732 -682.3 631.9 -585.5 -2694 -898.8 -3723 -3434

Joint	
Significance	

Test

Notes:		***Significant	at	the	1	percent	level.		**Significant	at	the	5	percent	level.		*Significant	at	the	10	percent	level.		All	regressions	include	birth	year	fixed	effects,	season	of	birth	fixed	effects,	municipality	fixed	effects,	
municipality-specific	linear	trends,	and	controls	for	parental	education.	Continuous	outcomes	(excluding	years	of	education)	in	the	bottom	and	top	1%	are	dropped	as	outliers.		Robust	standard	errors	are	clustered	at	the	
municipal	level	and	reported	in	parentheses.	

Table	7	-	Effect	of	Early-Life	Rainfall	Deviations	on	Adult	Health,	Education,	and	Incomes	(Municipal	Level)

Height	(cm) BMI	(kg/m	
squared)

Self-reported	
health	

excellent	or	
very	good	(=1)

Self-reported	
health	poor	

(=1)

Literate	(=1) Years	of	
Education

Positive	total	
income	(=1)

Total	Income	
(IHS)

Per	Capita	
Household	
Income	(IHS)



Lower	Bound Upper	Bound Lower	Bound Upper	Bound Lower	Bound Upper	Bound Lower	Bound Upper	Bound Lower	Bound Upper	Bound Lower	Bound Upper	Bound

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Rainfall	deviation	measures	(Method	1):

Before	birth -1.131** -0.117 -0.787** -0.034 -0.001 0.040 -0.063** -0.005 -0.063 0.013 -0.155 0.435
[0.526] [0.827] [0.356] [0.243] [0.049] [0.053] [0.027] [0.015] [0.047] [0.036] [0.211] [0.286]

First	year -1.054* 0.465 -0.543 0.175 -0.036 0.020 -0.035* 0.005 -0.015 0.023 -0.165 0.234
[0.552] [0.521] [0.378] [0.260] [0.048] [0.043] [0.020] [0.013] [0.032] [0.044] [0.386] [0.207]

Second	year -0.261 1.255 -0.774** 0.167 -0.003 0.088 -0.055* 0.001 -0.002 0.058 -0.120 0.248
[0.633] [1.146] [0.380] [0.252] [0.037] [0.055] [0.032] [0.014] [0.033] [0.038] [0.393] [0.159]

Third	year -0.306 0.865* -0.070 0.392 -0.018 0.039 -0.031 0.012 -0.057 0.006 -0.907*** -0.013

[0.689] [0.485] [0.359] [0.263] [0.041] [0.054] [0.025] [0.020] [0.042] [0.040] [0.342] [0.169]
Constant 169.134*** 169.680*** 28.824*** 29.173*** -0.206*** -0.173*** -0.304*** -0.267*** 1.102*** 1.135*** 3.458*** 4.033***

[1.573] [1.565] [0.812] [0.742] [0.058] [0.062] [0.044] [0.039] [0.075] [0.076] [0.561] [0.513]

Observations 3459 3628 3448 3617 3819 4006 3819 4006 3832 4019 3085 3226
R-squared 0.206 0.207 0.225 0.227 0.252 0.260 0.202 0.207 0.361 0.366 0.407 0.410
Log	likelihood -12518 -11928 -9541 -9085 -2028 -1921 1290 1342 -1614 -1492 -7731 -7380
Rainfall	deviation	measures	(Method	2):

Before	birth -1.435* 0.515 -0.704* 0.307 -0.075 -0.005 -0.011 0.012 -0.019 0.040 -0.331 0.090
[0.736] [0.605] [0.413] [0.382] [0.049] [0.050] [0.025] [0.030] [0.032] [0.044] [0.236] [0.210]

Birth	year 0.044 2.244** -0.368 0.368 -0.026 0.048 -0.038* 0.009 -0.010 0.071* -0.102 0.388
[0.663] [0.993] [0.419] [0.454] [0.045] [0.048] [0.020] [0.015] [0.037] [0.040] [0.245] [0.324]

First	year -0.960 0.681 -0.797* 0.008 -0.050 0.001 -0.030 0.001 -0.007 0.068 -0.269 0.167
[0.693] [0.912] [0.480] [0.291] [0.050] [0.054] [0.026] [0.017] [0.035] [0.045] [0.230] [0.305]

Second	year -0.245 1.163** -0.438 0.264 -0.069 -0.009 -0.020 0.008 -0.007 0.047 0.029 0.648

[0.701] [0.562] [0.423] [0.401] [0.050] [0.054] [0.020] [0.026] [0.048] [0.049] [0.291] [0.397]
Third	year -1.107* 0.722 -0.386 0.593 0.009 0.096** 0.004 0.038* -0.055 0.017 -0.199 0.200

[0.624] [0.516] [0.425] [0.423] [0.029] [0.044] [0.015] [0.022] [0.041] [0.029] [0.234] [0.323]
Constant 168.547*** 169.428*** 28.591*** 28.872*** -0.208*** -0.164*** -0.316*** -0.294*** 1.095*** 1.140*** 3.832*** 4.104***

[1.358] [1.424] [0.605] [0.586] [0.058] [0.050] [0.038] [0.035] [0.061] [0.061] [0.487] [0.540]

Observations 3649 3649 3639 3639 4029 4029 4029 4029 4043 4043 3237 3237
R-squared 0.206 0.209 0.224 0.225 0.252 0.253 0.203 0.204 0.363 0.364 0.408 0.409
Log	likelihood -12593 -12587 -9598 -9595 -2037 -2034 1297 1300 -1627 -1625 -7755 -7753
Notes:	***Significant	at	the	1	percent	level.		**Significant	at	the	5	percent	level.		*Significant	at	the	10	percent	level.		All	regressions	include	birth	year	fixed	effects,	season	of	birth	fixed	effects,	municipality	fixed	effects,	municipality-specific	linear	trends,	and	controls	for	
parental	education.	Continuous	outcomes	(excluding	years	of	education)	in	the	bottom	and	top	1%	are	dropped	as	outliers.		Robust	standard	errors	are	clustered	at	the	municipal	level	and	reported	in	parentheses.		The	lower	and	upper	bounds	are	the	minimum	and	
maximum	estimation	obtained	under	a	range	of	assumptions	about	the	early-life	rainfall	exposure	of	individuals	who	migrated	from	their	munipality	of	birth.	Estimates	for	which	zero	is	not	included	within	the	bounds	are	bolded.

Table	8a	-	Bounds	of	Effect	of	Early-Life	Rainfall	Deviations	on	Adult	Health	and	Education	(Municipal	Level)

Height	(cm) BMI	(kg/m	squared) Self-reported	health	
excellent	or	very	good	(=1)

Self-reported	health	poor	
(=1)

Literate	(=1) Years	of	Education



Lower	Bound Upper	Bound Lower	Bound Upper	Bound Lower	Bound Upper	Bound

(1) (2) (3) (4) (5) (6)
Rainfall	deviation	measures	(Method	1):

Before	birth -0.039 0.017 -0.199 0.105 -0.397* 0.036
[0.036] [0.041] [0.267] [0.240] [0.207] [0.177]

First	year -0.081 0.005 -0.376 0.036 -0.386 0.009
[0.053] [0.030] [0.303] [0.178] [0.316] [0.224]

Second	year 0.018 0.086** 0.108 0.512* 0.044 0.393

[0.033] [0.042] [0.200] [0.271] [0.140] [0.260]
Third	year -0.015 0.014 -0.095 0.098 -0.098 0.309

[0.036] [0.043] [0.199] [0.268] [0.166] [0.228]
Constant 0.078 0.141 0.920* 1.217** 5.133*** 5.340***

[0.086] [0.086] [0.505] [0.471] [0.395] [0.434]

Observations 3832 4019 3807 3994 3809 3996
R-squared 0.193 0.200 0.202 0.209 0.340 0.353
Log	likelihood -2483 -2351 -9616 -9163 -8670 -8226
Rainfall	deviation	measures	(Method	2):

Before	birth -0.019 0.064 -0.151 0.361 0.237 0.840***

[0.041] [0.059] [0.242] [0.361] [0.177] [0.307]
Birth	year 0.012 0.094 0.095 0.693** -0.266 0.408

[0.044] [0.061] [0.242] [0.334] [0.304] [0.303]
First	year -0.027 0.041 -0.189 0.154 -0.445* 0.027

[0.040] [0.054] [0.235] [0.315] [0.235] [0.230]
Second	year -0.015 0.032 -0.100 0.164 0.041 0.588**

[0.052] [0.034] [0.306] [0.193] [0.272] [0.251]
Third	year -0.085 0.018 -0.369 0.128 -0.514** 0.140

[0.055] [0.030] [0.317] [0.177] [0.257] [0.256]
Constant 0.136* 0.210*** 1.106*** 1.551*** 5.081*** 5.452***

[0.072] [0.072] [0.386] [0.380] [0.301] [0.331]

Observations 4043 4043 4018 4018 4020 4020
R-squared 0.193 0.194 0.203 0.204 0.343 0.345
Log	likelihood -2501 -2498 -9672 -9670 -8716 -8711
Notes:	Please	see	the	notes	for	Table	8a.

Table	8b	-	Bounds	of	Effect	of	Early-Life	Rainfall	Deviations	on	Adult	Income	(Municipal	Level)

Positive	Individual	Income	
(=1)

Total	Individual	Income	(IHS) Per	Capita	Household	
Income	(IHS)



	

Figure	1a:	Average	Monthly	Rainfall,	1900-1979

Figure	1b:	Average	Monthly	Rainfall	by	Region,	1900-1979
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Figure	2	-	Comparison	of	Rainfall	Measures
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Figure	3b:	Average	Yearly	Rainfall	for	Southeast	Region	1900-1979

Figure	3a:	Average	Yearly	Rainfall	for	Northeast	Region	1900-1979



Cohort	Size Any	Births	(=1) Cohort	Size Any	Births	(=1) Cohort	Size Any	Births	(=1) Cohort	Size Any	Births	(=1)

(1) (2) (3) (4) (5) (6) (7) (8)
Rainfall	measures	(Method	1):

Before	birth 0.002 0.004 0.009 0.003 0.039 0.038* 0.002 0.004
[0.028] [0.023] [0.011] [0.008] [0.027] [0.020] [0.012] [0.008]

First	year 0.017 0.005 0.012 0.011 0.007 -0.000 0.010 0.012
[0.034] [0.032] [0.009] [0.007] [0.028] [0.026] [0.016] [0.013]

Second	year -0.024 -0.011 -0.001 0.008 -0.007 -0.010 0.008 0.005
[0.033] [0.025] [0.016] [0.013] [0.020] [0.017] [0.017] [0.013]

Third	year 0.022 0.025 0.007 0.001 0.006 0.017 -0.018** -0.013*
[0.031] [0.029] [0.013] [0.010] [0.027] [0.020] [0.007] [0.007]

Constant 0.291** 0.328** 0.185*** 0.211*** 0.297*** 0.233** 0.290*** 0.218***
[0.109] [0.110] [0.040] [0.033] [0.090] [0.087] [0.029] [0.027]

Observations 5,941 5,941 6,084 6,084 5,941 5,941 6,084 6,084
R-squared 0.145 0.117 0.144 0.116 0.149 0.118 0.149 0.088
Log	likelihood -3283 -2118 -3342 -2150 -3517 -2203 -3567 -1976
Rainfall	measures	(Method	2):

Before	birth -0.009 -0.007 0.008 0.006 0.018 0.025 0.025 0.018
[0.026] [0.020] [0.018] [0.016] [0.018] [0.016] [0.015] [0.014]

Birth	year 0.013 0.010 0.000 0.001 0.030 0.021 -0.002 -0.002
[0.029] [0.026] [0.010] [0.008] [0.023] [0.019] [0.009] [0.009]

First	year -0.051 -0.031 -0.013 -0.003 -0.007 -0.011 0.030* 0.016**
[0.035] [0.027] [0.014] [0.011] [0.029] [0.025] [0.015] [0.007]

Second	year 0.017 0.020 -0.013 -0.007 -0.030 -0.012 0.011 0.012
[0.029] [0.028] [0.014] [0.012] [0.028] [0.022] [0.010] [0.008]

Third	year 0.070** 0.048** 0.028** 0.020* -0.017 -0.024 -0.002 -0.002
[0.024] [0.018] [0.010] [0.010] [0.021] [0.018] [0.014] [0.011]

Constant 0.196*** 0.219*** 0.195*** 0.214*** 0.283*** 0.215*** 0.271*** 0.209***
[0.027] [0.022] [0.037] [0.029] [0.034] [0.033] [0.032] [0.032]

Observations 6,084 6,084 6,084 6,084 6,084 6,084 6,084 6,084
R-squared 0.145 0.116 0.145 0.116 0.149 0.117 0.149 0.117
Log	likelihood -3338 -2148 -3339 -2148 -3567 -2232 -3564 -2231

	

Notes:		***Significant	at	the	1	percent	level.		**Significant	at	the	5	percent	level.		*Significant	at	the	10	percent	level.		All	regressions	estimated	for	state-month	combinations	and	include	rainy	season	fixed	effects,	birth	year	fixed	
effects,	state	fixed	effects,	and	state-specific	linear	trends.	Robust	standard	errors	are	clustered	at	the	state	level	and	reported	in	parentheses.	

Appendix	Table	A1	-	Effect	of	Early-Life	Rainfall	on	Cohort	Size

Females Males

Rainfall	Deviations Extreme	Weather	Events Rainfall	Deviations Extreme	Weather	Events



(1) (2) (3)
Rainfall	deviation	measures	(Method	1):

Before	birth 0.092** 0.118* 0.039
[0.037] [0.056] [0.077]

First	year -0.001 0.055 -0.040
[0.019] [0.052] [0.044]

Second	year 0.002 -0.023 0.066
[0.023] [0.043] [0.053]

Third	year 0.010 0.021 -0.025
[0.028] [0.071] [0.037]

Constant -0.015 0.560*** 0.144
[0.047] [0.099] [0.118]

Observations 3,981 2,053 1,928
R-squared 0.598 0.642 0.640
Log	likelihood -993.3 -361.8 -397.6
Rainfall	deviation	measures	(Method	2):

Before	birth 0.073** 0.046 0.048
[0.028] [0.046] [0.072]

Birth	year -0.002 0.072 -0.041
[0.031] [0.061] [0.046]

First	year -0.000 -0.034 0.020
[0.032] [0.051] [0.069]

Second	year 0.032 0.047 -0.012
[0.031] [0.049] [0.045]

Third	year 0.011 0.033 0.001
[0.044] [0.062] [0.059]

Constant 0.014 0.691*** 0.003
[0.042] [0.094] [0.135]

Observations 4,050 2,091 1,959
R-squared 0.596 0.638 0.641
Log	likelihood -1019 -382.3 -401.3

Appendix	Table	A2	-	Effect	of	Early-Life	Rainfall	on	Probability	of	Migrating	from	Municipality	of	Birth

All	Individuals Women	Only Men	Only

Notes:		***Significant	at	the	1	percent	level.		**Significant	at	the	5	percent	level.		*Significant	at	the	10	percent	level.		All	regressions	
include	season	of	birth	fixed	effects,	birth	year	fixed	effects,	state	fixed	effects,	and	state-specific	linear	trends.	Robust	standard	
errors	are	clustered	at	the	state	level	and	reported	in	parentheses.	
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